{"title":"monge - ampantere型方程的精确解与约简","authors":"A. V. Aksenov, A. D. Polyanin","doi":"10.1134/S0040577925090028","DOIUrl":null,"url":null,"abstract":"<p> We present a review of publications devoted to exact solutions, transformations, symmetries, reductions, and applications of strongly nonlinear stationary and nonstationary (parabolic) equations of the Monge–Ampère type. We study the strongly nonlinear nonstationary mathematical physics equations with three independent variables that contain a quadratic combination of second spatial derivatives of the Monge–Ampère type and an arbitrary degree of the first temporal derivative or an arbitrary function depending on this derivative. We study the symmetries of these equations using group analysis methods. We derive formulas that enable the construction of multiparameter families of solutions, based on simpler solutions. We consider two-dimensional and one-dimensional symmetry and nonsymmetry reductions, which transform the original equations into simpler partial differential equations with two independent variables, or to ordinary differential equations and systems of such equations. Self-similar and other invariant solutions are described. Using generalized and functional separation of variables methods, we constructed several new exact solutions, many of which are expressed in elementary functions or in quadratures. Some solutions are obtained using auxiliary intermediate-point or contact transformations. These exact solutions can be used as test problems to verify the adequacy of and evaluate the accuracy of numerical and approximate analytical methods for solving problems described by strongly nonlinear mathematical physics equations. </p>","PeriodicalId":797,"journal":{"name":"Theoretical and Mathematical Physics","volume":"224 3","pages":"1527 - 1566"},"PeriodicalIF":1.1000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Review of exact solutions and reductions of Monge–Ampère type equations\",\"authors\":\"A. V. Aksenov, A. D. Polyanin\",\"doi\":\"10.1134/S0040577925090028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> We present a review of publications devoted to exact solutions, transformations, symmetries, reductions, and applications of strongly nonlinear stationary and nonstationary (parabolic) equations of the Monge–Ampère type. We study the strongly nonlinear nonstationary mathematical physics equations with three independent variables that contain a quadratic combination of second spatial derivatives of the Monge–Ampère type and an arbitrary degree of the first temporal derivative or an arbitrary function depending on this derivative. We study the symmetries of these equations using group analysis methods. We derive formulas that enable the construction of multiparameter families of solutions, based on simpler solutions. We consider two-dimensional and one-dimensional symmetry and nonsymmetry reductions, which transform the original equations into simpler partial differential equations with two independent variables, or to ordinary differential equations and systems of such equations. Self-similar and other invariant solutions are described. Using generalized and functional separation of variables methods, we constructed several new exact solutions, many of which are expressed in elementary functions or in quadratures. Some solutions are obtained using auxiliary intermediate-point or contact transformations. These exact solutions can be used as test problems to verify the adequacy of and evaluate the accuracy of numerical and approximate analytical methods for solving problems described by strongly nonlinear mathematical physics equations. </p>\",\"PeriodicalId\":797,\"journal\":{\"name\":\"Theoretical and Mathematical Physics\",\"volume\":\"224 3\",\"pages\":\"1527 - 1566\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0040577925090028\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0040577925090028","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
Review of exact solutions and reductions of Monge–Ampère type equations
We present a review of publications devoted to exact solutions, transformations, symmetries, reductions, and applications of strongly nonlinear stationary and nonstationary (parabolic) equations of the Monge–Ampère type. We study the strongly nonlinear nonstationary mathematical physics equations with three independent variables that contain a quadratic combination of second spatial derivatives of the Monge–Ampère type and an arbitrary degree of the first temporal derivative or an arbitrary function depending on this derivative. We study the symmetries of these equations using group analysis methods. We derive formulas that enable the construction of multiparameter families of solutions, based on simpler solutions. We consider two-dimensional and one-dimensional symmetry and nonsymmetry reductions, which transform the original equations into simpler partial differential equations with two independent variables, or to ordinary differential equations and systems of such equations. Self-similar and other invariant solutions are described. Using generalized and functional separation of variables methods, we constructed several new exact solutions, many of which are expressed in elementary functions or in quadratures. Some solutions are obtained using auxiliary intermediate-point or contact transformations. These exact solutions can be used as test problems to verify the adequacy of and evaluate the accuracy of numerical and approximate analytical methods for solving problems described by strongly nonlinear mathematical physics equations.
期刊介绍:
Theoretical and Mathematical Physics covers quantum field theory and theory of elementary particles, fundamental problems of nuclear physics, many-body problems and statistical physics, nonrelativistic quantum mechanics, and basic problems of gravitation theory. Articles report on current developments in theoretical physics as well as related mathematical problems.
Theoretical and Mathematical Physics is published in collaboration with the Steklov Mathematical Institute of the Russian Academy of Sciences.