Tarski代数的无选择对偶性

IF 0.5 4区 数学 Q3 MATHEMATICS
Sergio Arturo Celani, Luciano Javier González
{"title":"Tarski代数的无选择对偶性","authors":"Sergio Arturo Celani,&nbsp;Luciano Javier González","doi":"10.1007/s10485-025-09816-0","DOIUrl":null,"url":null,"abstract":"<div><p>In [N. Bezhanishvili and W. H. Holliday. Choice-free Stone duality. J. Symb. Log., 85(1):109–148, 2020.], the authors develop a choice-free topological duality for the algebraic category of Boolean algebras. We adapt the techniques and constructions given by Bezhanishvili and Holliday to develop a topological duality for the algebraic category of Tarski algebras without using the Axiom of Choice. Then, we show that the duality presented here for Tarski algebras is in fact a generalization of the duality given by Bezhanishvili and Holliday for Boolean algebras. We also obtain a choice-free topological duality for the algebraic category of generalized Boolean algebra.</p></div>","PeriodicalId":7952,"journal":{"name":"Applied Categorical Structures","volume":"33 4","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Choice-Free Duality for Tarski Algebras\",\"authors\":\"Sergio Arturo Celani,&nbsp;Luciano Javier González\",\"doi\":\"10.1007/s10485-025-09816-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In [N. Bezhanishvili and W. H. Holliday. Choice-free Stone duality. J. Symb. Log., 85(1):109–148, 2020.], the authors develop a choice-free topological duality for the algebraic category of Boolean algebras. We adapt the techniques and constructions given by Bezhanishvili and Holliday to develop a topological duality for the algebraic category of Tarski algebras without using the Axiom of Choice. Then, we show that the duality presented here for Tarski algebras is in fact a generalization of the duality given by Bezhanishvili and Holliday for Boolean algebras. We also obtain a choice-free topological duality for the algebraic category of generalized Boolean algebra.</p></div>\",\"PeriodicalId\":7952,\"journal\":{\"name\":\"Applied Categorical Structures\",\"volume\":\"33 4\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Categorical Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10485-025-09816-0\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Categorical Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10485-025-09816-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在[N。Bezhanishvili和W. H. Holliday。无选择石的二元性。j . Symb。日志。中国生物医学工程学报,28(1):389 - 398,2020。],作者为布尔代数的代数范畴开发了一个无选择拓扑对偶。我们采用Bezhanishvili和Holliday给出的技术和构造,在不使用选择公理的情况下,发展了Tarski代数范畴的拓扑对偶性。然后,我们证明了这里给出的Tarski代数的对偶性实际上是Bezhanishvili和Holliday给出的布尔代数对偶性的推广。对于广义布尔代数的代数范畴,我们也得到了一个无选择拓扑对偶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Choice-Free Duality for Tarski Algebras

In [N. Bezhanishvili and W. H. Holliday. Choice-free Stone duality. J. Symb. Log., 85(1):109–148, 2020.], the authors develop a choice-free topological duality for the algebraic category of Boolean algebras. We adapt the techniques and constructions given by Bezhanishvili and Holliday to develop a topological duality for the algebraic category of Tarski algebras without using the Axiom of Choice. Then, we show that the duality presented here for Tarski algebras is in fact a generalization of the duality given by Bezhanishvili and Holliday for Boolean algebras. We also obtain a choice-free topological duality for the algebraic category of generalized Boolean algebra.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
16.70%
发文量
29
审稿时长
>12 weeks
期刊介绍: Applied Categorical Structures focuses on applications of results, techniques and ideas from category theory to mathematics, physics and computer science. These include the study of topological and algebraic categories, representation theory, algebraic geometry, homological and homotopical algebra, derived and triangulated categories, categorification of (geometric) invariants, categorical investigations in mathematical physics, higher category theory and applications, categorical investigations in functional analysis, in continuous order theory and in theoretical computer science. In addition, the journal also follows the development of emerging fields in which the application of categorical methods proves to be relevant. Applied Categorical Structures publishes both carefully refereed research papers and survey papers. It promotes communication and increases the dissemination of new results and ideas among mathematicians and computer scientists who use categorical methods in their research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信