第六阶painlevleve方程的最小代数解

IF 1.1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
R. Conte
{"title":"第六阶painlevleve方程的最小代数解","authors":"R. Conte","doi":"10.1134/S0040577925090053","DOIUrl":null,"url":null,"abstract":"<p> For each of the forty-eight exceptional algebraic solutions <span>\\(u(x)\\)</span> of the sixth Painlevé equation, we build the algebraic curve <span>\\(P(u,x)=0\\)</span> of a degree conjectured to be minimal, and then we give an optimal parametric representation of it. This degree is equal to the number of branches, except for fifteen solutions. </p>","PeriodicalId":797,"journal":{"name":"Theoretical and Mathematical Physics","volume":"224 3","pages":"1595 - 1612"},"PeriodicalIF":1.1000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimal algebraic solutions of the sixth Painlevé equation\",\"authors\":\"R. Conte\",\"doi\":\"10.1134/S0040577925090053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> For each of the forty-eight exceptional algebraic solutions <span>\\\\(u(x)\\\\)</span> of the sixth Painlevé equation, we build the algebraic curve <span>\\\\(P(u,x)=0\\\\)</span> of a degree conjectured to be minimal, and then we give an optimal parametric representation of it. This degree is equal to the number of branches, except for fifteen solutions. </p>\",\"PeriodicalId\":797,\"journal\":{\"name\":\"Theoretical and Mathematical Physics\",\"volume\":\"224 3\",\"pages\":\"1595 - 1612\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0040577925090053\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0040577925090053","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

对于第六个painlev方程的48个例外代数解\(u(x)\)中的每一个,我们都构建了一个猜想最小度的代数曲线\(P(u,x)=0\),然后我们给出了它的最优参数表示。除了15个解外,这个度数等于分支数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimal algebraic solutions of the sixth Painlevé equation

For each of the forty-eight exceptional algebraic solutions \(u(x)\) of the sixth Painlevé equation, we build the algebraic curve \(P(u,x)=0\) of a degree conjectured to be minimal, and then we give an optimal parametric representation of it. This degree is equal to the number of branches, except for fifteen solutions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theoretical and Mathematical Physics
Theoretical and Mathematical Physics 物理-物理:数学物理
CiteScore
1.60
自引率
20.00%
发文量
103
审稿时长
4-8 weeks
期刊介绍: Theoretical and Mathematical Physics covers quantum field theory and theory of elementary particles, fundamental problems of nuclear physics, many-body problems and statistical physics, nonrelativistic quantum mechanics, and basic problems of gravitation theory. Articles report on current developments in theoretical physics as well as related mathematical problems. Theoretical and Mathematical Physics is published in collaboration with the Steklov Mathematical Institute of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信