垂直纵波入射下冰-水覆盖横向各向同性多孔弹性多层介质的瞬态响应

IF 1.4 3区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY
Xibin Li, Yanghai Shen, Xianlin Jia, Zhiqing Zhang, Ernian Pan
{"title":"垂直纵波入射下冰-水覆盖横向各向同性多孔弹性多层介质的瞬态响应","authors":"Xibin Li,&nbsp;Yanghai Shen,&nbsp;Xianlin Jia,&nbsp;Zhiqing Zhang,&nbsp;Ernian Pan","doi":"10.1007/s10659-025-10145-5","DOIUrl":null,"url":null,"abstract":"<div><p>Formation of ice layers during winter is a common natural phenomenon in high-latitude regions. To evaluate the impact of the ice layer on the seismic response of a poroelastic medium, we develop a novel model to describe the dynamic interaction among the ice layer, water layer, and transversely isotropic poroelastic rock under vertical P-wave excitation. First, the general solutions for the poroelastic rock and overlying water and ice layers are derived by applying the Laplace transform. Then the dual-variable and position (DVP) method is employed to obtain a semi-analytical solution of the layered media in the transform domain. By applying a numerical inverse Laplace transform scheme, the time response of free-field motion in the layered rock under P-wave excitation is obtained. Numerical results show that the ice layer causes more complex waveforms and amplifies the vertical displacement in deeper locations in the poroelastic medium with low permeability. A higher anisotropic modulus ratio leads to an earlier arrival of displacement peaks and troughs, with this effect strengthening over time. Stiff interlayers amplify the displacement and advance the waveform, while soft interlayers have the opposite effect.</p></div>","PeriodicalId":624,"journal":{"name":"Journal of Elasticity","volume":"157 3","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10659-025-10145-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Transient Response of an Ice-Water-Covered Transversely Isotropic Poroelastic and Multilayered Medium Under Vertical P-Wave Incidence\",\"authors\":\"Xibin Li,&nbsp;Yanghai Shen,&nbsp;Xianlin Jia,&nbsp;Zhiqing Zhang,&nbsp;Ernian Pan\",\"doi\":\"10.1007/s10659-025-10145-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Formation of ice layers during winter is a common natural phenomenon in high-latitude regions. To evaluate the impact of the ice layer on the seismic response of a poroelastic medium, we develop a novel model to describe the dynamic interaction among the ice layer, water layer, and transversely isotropic poroelastic rock under vertical P-wave excitation. First, the general solutions for the poroelastic rock and overlying water and ice layers are derived by applying the Laplace transform. Then the dual-variable and position (DVP) method is employed to obtain a semi-analytical solution of the layered media in the transform domain. By applying a numerical inverse Laplace transform scheme, the time response of free-field motion in the layered rock under P-wave excitation is obtained. Numerical results show that the ice layer causes more complex waveforms and amplifies the vertical displacement in deeper locations in the poroelastic medium with low permeability. A higher anisotropic modulus ratio leads to an earlier arrival of displacement peaks and troughs, with this effect strengthening over time. Stiff interlayers amplify the displacement and advance the waveform, while soft interlayers have the opposite effect.</p></div>\",\"PeriodicalId\":624,\"journal\":{\"name\":\"Journal of Elasticity\",\"volume\":\"157 3\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10659-025-10145-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Elasticity\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10659-025-10145-5\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Elasticity","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10659-025-10145-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

冬季形成冰层是高纬度地区常见的自然现象。为了评估冰层对孔隙弹性介质地震响应的影响,我们建立了一个新的模型来描述垂直纵波激励下冰层、水层和横向各向同性孔隙弹性岩石之间的动态相互作用。首先,应用拉普拉斯变换导出了孔隙弹性岩石及其上覆水、冰层的一般解。然后采用双变量和位置(DVP)方法在变换域中得到层状介质的半解析解。应用数值拉普拉斯逆变换格式,得到了层状岩石在纵波激励下自由场运动的时间响应。数值计算结果表明,在低渗透率的孔隙弹性介质中,冰的存在会引起更复杂的波形,并在更深的位置放大垂直位移。较高的各向异性模量比导致更早到达位移峰和位移谷,这种效应随着时间的推移而增强。刚性夹层放大了位移,推进了波形,而软夹层则相反。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transient Response of an Ice-Water-Covered Transversely Isotropic Poroelastic and Multilayered Medium Under Vertical P-Wave Incidence

Formation of ice layers during winter is a common natural phenomenon in high-latitude regions. To evaluate the impact of the ice layer on the seismic response of a poroelastic medium, we develop a novel model to describe the dynamic interaction among the ice layer, water layer, and transversely isotropic poroelastic rock under vertical P-wave excitation. First, the general solutions for the poroelastic rock and overlying water and ice layers are derived by applying the Laplace transform. Then the dual-variable and position (DVP) method is employed to obtain a semi-analytical solution of the layered media in the transform domain. By applying a numerical inverse Laplace transform scheme, the time response of free-field motion in the layered rock under P-wave excitation is obtained. Numerical results show that the ice layer causes more complex waveforms and amplifies the vertical displacement in deeper locations in the poroelastic medium with low permeability. A higher anisotropic modulus ratio leads to an earlier arrival of displacement peaks and troughs, with this effect strengthening over time. Stiff interlayers amplify the displacement and advance the waveform, while soft interlayers have the opposite effect.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Elasticity
Journal of Elasticity 工程技术-材料科学:综合
CiteScore
3.70
自引率
15.00%
发文量
74
审稿时长
>12 weeks
期刊介绍: The Journal of Elasticity was founded in 1971 by Marvin Stippes (1922-1979), with its main purpose being to report original and significant discoveries in elasticity. The Journal has broadened in scope over the years to include original contributions in the physical and mathematical science of solids. The areas of rational mechanics, mechanics of materials, including theories of soft materials, biomechanics, and engineering sciences that contribute to fundamental advancements in understanding and predicting the complex behavior of solids are particularly welcomed. The role of elasticity in all such behavior is well recognized and reporting significant discoveries in elasticity remains important to the Journal, as is its relation to thermal and mass transport, electromagnetism, and chemical reactions. Fundamental research that applies the concepts of physics and elements of applied mathematical science is of particular interest. Original research contributions will appear as either full research papers or research notes. Well-documented historical essays and reviews also are welcomed. Materials that will prove effective in teaching will appear as classroom notes. Computational and/or experimental investigations that emphasize relationships to the modeling of the novel physical behavior of solids at all scales are of interest. Guidance principles for content are to be found in the current interests of the Editorial Board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信