Antonio Miguel Ruiz-Armenteros, Miguel Marchamalo-Sacristán, Francisco Lamas-Fernández, Álvaro Hernández-Cabezudo, Alfredo Fernández-Landa, José Manuel Delgado-Blasco, Matus Bakon, Milan Lazecky, Daniele Perissin, Juraj Papco, Gonzalo Corral, José Luis García-Balboa, José Luis Mesa-Mingorance, Admilson da Penha Pacheco, Juan Manuel Jurado-Rodríguez, Joaquim J. Sousa
{"title":"水坝和大型池塘的综合监测:卫星雷达干涉测量和欧洲地面运动服务的作用","authors":"Antonio Miguel Ruiz-Armenteros, Miguel Marchamalo-Sacristán, Francisco Lamas-Fernández, Álvaro Hernández-Cabezudo, Alfredo Fernández-Landa, José Manuel Delgado-Blasco, Matus Bakon, Milan Lazecky, Daniele Perissin, Juraj Papco, Gonzalo Corral, José Luis García-Balboa, José Luis Mesa-Mingorance, Admilson da Penha Pacheco, Juan Manuel Jurado-Rodríguez, Joaquim J. Sousa","doi":"10.1007/s12518-025-00624-8","DOIUrl":null,"url":null,"abstract":"<div><p>Satellite radar interferometry (InSAR) has become an invaluable tool for monitoring dams and large ponds, providing significant advantages when complemented with geotechnical and geodetic monitoring. InSAR uses radar signals from satellites to detect ground movements with millimeter precision by comparing phase differences between images taken at different times. This technique enables large-scale, continuous monitoring, which is critical for identifying potential structural problems and preventing catastrophic failures. Unlike traditional geotechnical and geodetic monitoring, which require extensive equipment and manual data collection, InSAR provides a non-intrusive, efficient solution that covers vast areas with high temporal frequency. The European Ground Motion Service (EGMS) exemplifies these advantages by providing standardized ground motion data across Europe, derived from Sentinel-1 satellite radar data. EGMS enables routine and comprehensive monitoring of ground stability and infrastructure integrity, assisting in the early detection of deformation patterns and supporting proactive maintenance and risk management. For dam managers, the integration of InSAR with traditional methods enhances the reliability of structural health assessments. Geotechnical sensors offer localized information on soil and material properties, while geodetic methods provide precise positional data; InSAR complements these by delivering comprehensive, continuous deformation maps. This synergy ensures robust monitoring and enhances the ability to predict and mitigate potential problems, significantly improving the effectiveness and efficiency of monitoring dams and large ponds, and contributing to safer and more resilient infrastructure management. This work presents several case studies from the SIAGUA project as examples, highlighting the practical applications and benefits of combining InSAR with traditional monitoring techniques.</p></div>","PeriodicalId":46286,"journal":{"name":"Applied Geomatics","volume":"17 2","pages":"379 - 392"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12518-025-00624-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Integrated monitoring of dams and large ponds: the role of satellite radar interferometry and the European ground motion service\",\"authors\":\"Antonio Miguel Ruiz-Armenteros, Miguel Marchamalo-Sacristán, Francisco Lamas-Fernández, Álvaro Hernández-Cabezudo, Alfredo Fernández-Landa, José Manuel Delgado-Blasco, Matus Bakon, Milan Lazecky, Daniele Perissin, Juraj Papco, Gonzalo Corral, José Luis García-Balboa, José Luis Mesa-Mingorance, Admilson da Penha Pacheco, Juan Manuel Jurado-Rodríguez, Joaquim J. Sousa\",\"doi\":\"10.1007/s12518-025-00624-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Satellite radar interferometry (InSAR) has become an invaluable tool for monitoring dams and large ponds, providing significant advantages when complemented with geotechnical and geodetic monitoring. InSAR uses radar signals from satellites to detect ground movements with millimeter precision by comparing phase differences between images taken at different times. This technique enables large-scale, continuous monitoring, which is critical for identifying potential structural problems and preventing catastrophic failures. Unlike traditional geotechnical and geodetic monitoring, which require extensive equipment and manual data collection, InSAR provides a non-intrusive, efficient solution that covers vast areas with high temporal frequency. The European Ground Motion Service (EGMS) exemplifies these advantages by providing standardized ground motion data across Europe, derived from Sentinel-1 satellite radar data. EGMS enables routine and comprehensive monitoring of ground stability and infrastructure integrity, assisting in the early detection of deformation patterns and supporting proactive maintenance and risk management. For dam managers, the integration of InSAR with traditional methods enhances the reliability of structural health assessments. Geotechnical sensors offer localized information on soil and material properties, while geodetic methods provide precise positional data; InSAR complements these by delivering comprehensive, continuous deformation maps. This synergy ensures robust monitoring and enhances the ability to predict and mitigate potential problems, significantly improving the effectiveness and efficiency of monitoring dams and large ponds, and contributing to safer and more resilient infrastructure management. This work presents several case studies from the SIAGUA project as examples, highlighting the practical applications and benefits of combining InSAR with traditional monitoring techniques.</p></div>\",\"PeriodicalId\":46286,\"journal\":{\"name\":\"Applied Geomatics\",\"volume\":\"17 2\",\"pages\":\"379 - 392\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s12518-025-00624-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Geomatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12518-025-00624-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Geomatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s12518-025-00624-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"REMOTE SENSING","Score":null,"Total":0}
Integrated monitoring of dams and large ponds: the role of satellite radar interferometry and the European ground motion service
Satellite radar interferometry (InSAR) has become an invaluable tool for monitoring dams and large ponds, providing significant advantages when complemented with geotechnical and geodetic monitoring. InSAR uses radar signals from satellites to detect ground movements with millimeter precision by comparing phase differences between images taken at different times. This technique enables large-scale, continuous monitoring, which is critical for identifying potential structural problems and preventing catastrophic failures. Unlike traditional geotechnical and geodetic monitoring, which require extensive equipment and manual data collection, InSAR provides a non-intrusive, efficient solution that covers vast areas with high temporal frequency. The European Ground Motion Service (EGMS) exemplifies these advantages by providing standardized ground motion data across Europe, derived from Sentinel-1 satellite radar data. EGMS enables routine and comprehensive monitoring of ground stability and infrastructure integrity, assisting in the early detection of deformation patterns and supporting proactive maintenance and risk management. For dam managers, the integration of InSAR with traditional methods enhances the reliability of structural health assessments. Geotechnical sensors offer localized information on soil and material properties, while geodetic methods provide precise positional data; InSAR complements these by delivering comprehensive, continuous deformation maps. This synergy ensures robust monitoring and enhances the ability to predict and mitigate potential problems, significantly improving the effectiveness and efficiency of monitoring dams and large ponds, and contributing to safer and more resilient infrastructure management. This work presents several case studies from the SIAGUA project as examples, highlighting the practical applications and benefits of combining InSAR with traditional monitoring techniques.
期刊介绍:
Applied Geomatics (AGMJ) is the official journal of SIFET the Italian Society of Photogrammetry and Topography and covers all aspects and information on scientific and technical advances in the geomatics sciences. The Journal publishes innovative contributions in geomatics applications ranging from the integration of instruments, methodologies and technologies and their use in the environmental sciences, engineering and other natural sciences.
The areas of interest include many research fields such as: remote sensing, close range and videometric photogrammetry, image analysis, digital mapping, land and geographic information systems, geographic information science, integrated geodesy, spatial data analysis, heritage recording; network adjustment and numerical processes. Furthermore, Applied Geomatics is open to articles from all areas of deformation measurements and analysis, structural engineering, mechanical engineering and all trends in earth and planetary survey science and space technology. The Journal also contains notices of conferences and international workshops, industry news, and information on new products. It provides a useful forum for professional and academic scientists involved in geomatics science and technology.
Information on Open Research Funding and Support may be found here: https://www.springernature.com/gp/open-research/institutional-agreements