负能量Orlicz-Sobolev中涉及临界增长的kirchhoff型方程的无穷多解

IF 0.7 4区 数学 Q4 MATHEMATICS, APPLIED
Elmostafa Bendib, Mustapha Khiddi
{"title":"负能量Orlicz-Sobolev中涉及临界增长的kirchhoff型方程的无穷多解","authors":"Elmostafa Bendib,&nbsp;Mustapha Khiddi","doi":"10.21136/AM.2025.0059-25","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate a class of Kirchhoff-type equations characterized by critical growth within Orlicz-Sobolev spaces. The main result establishes the existence of infinitely many solutions with negative energy. Using an adapted concentration-compactness principle and advanced variational methods, we overcome key challenges such as non-compactness and non-differentiability to the associated functionals. This work extends existing results to more general functional spaces, offering new insights into nonlocal nonlinear equations.</p></div>","PeriodicalId":55505,"journal":{"name":"Applications of Mathematics","volume":"70 3","pages":"441 - 456"},"PeriodicalIF":0.7000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Infinitely many solutions for Kirchhoff-type equations involving critical growth in Orlicz-Sobolev with negative energies\",\"authors\":\"Elmostafa Bendib,&nbsp;Mustapha Khiddi\",\"doi\":\"10.21136/AM.2025.0059-25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We investigate a class of Kirchhoff-type equations characterized by critical growth within Orlicz-Sobolev spaces. The main result establishes the existence of infinitely many solutions with negative energy. Using an adapted concentration-compactness principle and advanced variational methods, we overcome key challenges such as non-compactness and non-differentiability to the associated functionals. This work extends existing results to more general functional spaces, offering new insights into nonlocal nonlinear equations.</p></div>\",\"PeriodicalId\":55505,\"journal\":{\"name\":\"Applications of Mathematics\",\"volume\":\"70 3\",\"pages\":\"441 - 456\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applications of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.21136/AM.2025.0059-25\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applications of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.21136/AM.2025.0059-25","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

研究了一类在Orlicz-Sobolev空间中以临界增长为特征的kirchhoff型方程。主要结果建立了负能量解的无穷多解的存在性。利用一种适应的集中紧性原理和先进的变分方法,我们克服了相关泛函的非紧性和不可微性等关键挑战。这项工作将现有的结果扩展到更一般的泛函空间,为非局部非线性方程提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Infinitely many solutions for Kirchhoff-type equations involving critical growth in Orlicz-Sobolev with negative energies

We investigate a class of Kirchhoff-type equations characterized by critical growth within Orlicz-Sobolev spaces. The main result establishes the existence of infinitely many solutions with negative energy. Using an adapted concentration-compactness principle and advanced variational methods, we overcome key challenges such as non-compactness and non-differentiability to the associated functionals. This work extends existing results to more general functional spaces, offering new insights into nonlocal nonlinear equations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applications of Mathematics
Applications of Mathematics 数学-应用数学
CiteScore
1.50
自引率
0.00%
发文量
0
审稿时长
3.0 months
期刊介绍: Applications of Mathematics publishes original high quality research papers that are directed towards applications of mathematical methods in various branches of science and engineering. The main topics covered include: - Mechanics of Solids; - Fluid Mechanics; - Electrical Engineering; - Solutions of Differential and Integral Equations; - Mathematical Physics; - Optimization; - Probability Mathematical Statistics. The journal is of interest to a wide audience of mathematicians, scientists and engineers concerned with the development of scientific computing, mathematical statistics and applicable mathematics in general.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信