拓扑上的分离公理\(\Gamma\) -半超群

IF 0.7 Q2 MATHEMATICS
Fatemeh Barkhori Mehni, Sohrab Ostadhadi-Dehkordi
{"title":"拓扑上的分离公理\\(\\Gamma\\) -半超群","authors":"Fatemeh Barkhori Mehni,&nbsp;Sohrab Ostadhadi-Dehkordi","doi":"10.1007/s13370-025-01343-4","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we investigate the concept of topological <span>\\(\\Gamma\\)</span>-semihypergroups as a generalization of topological semihypergroups. Also, we present the new connection between topological <span>\\(\\Gamma\\)</span>-semihypergroups and topological semihypergroups by special equivalence relation. Furthermore, we define and consider <span>\\(\\Gamma\\)</span>-hyperideals and selection function on <span>\\(\\Gamma\\)</span>-semihypergroups. Additionally, we consider separation axioms(<span>\\(T_1\\)</span> to <span>\\(T_4\\)</span>) for topological <span>\\(\\Gamma\\)</span> -semihypergroup and we present a connection between topological <span>\\(\\Gamma\\)</span> -semihypergroups and topological semihypergroups(semigroups). Finally, we prove that topological <span>\\(\\Gamma\\)</span>-semihypergroup <i>H</i> is <span>\\(T_i,\\)</span> for <span>\\(1\\le i \\le 4\\)</span> if and only if <span>\\(\\mid H \\mid =1.\\)</span></p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"36 3","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Separation Axioms on Topological \\\\(\\\\Gamma\\\\)-Semihypergroups\",\"authors\":\"Fatemeh Barkhori Mehni,&nbsp;Sohrab Ostadhadi-Dehkordi\",\"doi\":\"10.1007/s13370-025-01343-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we investigate the concept of topological <span>\\\\(\\\\Gamma\\\\)</span>-semihypergroups as a generalization of topological semihypergroups. Also, we present the new connection between topological <span>\\\\(\\\\Gamma\\\\)</span>-semihypergroups and topological semihypergroups by special equivalence relation. Furthermore, we define and consider <span>\\\\(\\\\Gamma\\\\)</span>-hyperideals and selection function on <span>\\\\(\\\\Gamma\\\\)</span>-semihypergroups. Additionally, we consider separation axioms(<span>\\\\(T_1\\\\)</span> to <span>\\\\(T_4\\\\)</span>) for topological <span>\\\\(\\\\Gamma\\\\)</span> -semihypergroup and we present a connection between topological <span>\\\\(\\\\Gamma\\\\)</span> -semihypergroups and topological semihypergroups(semigroups). Finally, we prove that topological <span>\\\\(\\\\Gamma\\\\)</span>-semihypergroup <i>H</i> is <span>\\\\(T_i,\\\\)</span> for <span>\\\\(1\\\\le i \\\\le 4\\\\)</span> if and only if <span>\\\\(\\\\mid H \\\\mid =1.\\\\)</span></p></div>\",\"PeriodicalId\":46107,\"journal\":{\"name\":\"Afrika Matematika\",\"volume\":\"36 3\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Afrika Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13370-025-01343-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-025-01343-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了拓扑\(\Gamma\) -半超群作为拓扑半超群的推广的概念。利用特殊等价关系,给出了拓扑\(\Gamma\) -半超群与拓扑半超群之间的新联系。此外,我们定义并考虑了\(\Gamma\) -半超群上的\(\Gamma\) -超群和选择函数。此外,我们考虑了拓扑\(\Gamma\) -半超群的分离公理(\(T_1\)到\(T_4\)),并提出了拓扑\(\Gamma\) -半超群和拓扑半超群(半群)之间的联系。最后,我们证明了拓扑\(\Gamma\) -半超群H对于\(1\le i \le 4\)是\(T_i,\)当且仅当 \(\mid H \mid =1.\)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Separation Axioms on Topological \(\Gamma\)-Semihypergroups

In this paper, we investigate the concept of topological \(\Gamma\)-semihypergroups as a generalization of topological semihypergroups. Also, we present the new connection between topological \(\Gamma\)-semihypergroups and topological semihypergroups by special equivalence relation. Furthermore, we define and consider \(\Gamma\)-hyperideals and selection function on \(\Gamma\)-semihypergroups. Additionally, we consider separation axioms(\(T_1\) to \(T_4\)) for topological \(\Gamma\) -semihypergroup and we present a connection between topological \(\Gamma\) -semihypergroups and topological semihypergroups(semigroups). Finally, we prove that topological \(\Gamma\)-semihypergroup H is \(T_i,\) for \(1\le i \le 4\) if and only if \(\mid H \mid =1.\)

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Afrika Matematika
Afrika Matematika MATHEMATICS-
CiteScore
2.00
自引率
9.10%
发文量
96
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信