{"title":"简化Lax对得到可积矩阵修正Korteweg-de Vries模型","authors":"Wen-Xiu Ma","doi":"10.1007/s12043-025-02968-7","DOIUrl":null,"url":null,"abstract":"<div><p>This paper explores the matrix modified Korteweg–de Vries (mKdV) integrable models using similarity transformations. The study employs the Lax pair formulation as a foundation, proposing pairs of similarity transformations to reduce the Lax pairs of the Ablowitz–Kaup–Newell–Segur matrix spectral problems, thereby deriving integrable matrix mKdV models. Four illustrative scenarios are discussed to present specific examples of these reduced integrable models.</p></div>","PeriodicalId":743,"journal":{"name":"Pramana","volume":"99 3","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reducing Lax pairs to obtain integrable matrix modified Korteweg–de Vries models\",\"authors\":\"Wen-Xiu Ma\",\"doi\":\"10.1007/s12043-025-02968-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper explores the matrix modified Korteweg–de Vries (mKdV) integrable models using similarity transformations. The study employs the Lax pair formulation as a foundation, proposing pairs of similarity transformations to reduce the Lax pairs of the Ablowitz–Kaup–Newell–Segur matrix spectral problems, thereby deriving integrable matrix mKdV models. Four illustrative scenarios are discussed to present specific examples of these reduced integrable models.</p></div>\",\"PeriodicalId\":743,\"journal\":{\"name\":\"Pramana\",\"volume\":\"99 3\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pramana\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12043-025-02968-7\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pramana","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s12043-025-02968-7","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
本文利用相似变换探讨了矩阵修正的Korteweg-de Vries (mKdV)可积模型。本研究以Lax对公式为基础,提出了对相似变换来减少ablowitz - kap - newwell - segur矩阵谱问题的Lax对,从而推导出可积矩阵mKdV模型。讨论了四个说明性场景,以给出这些简化可积模型的具体示例。
This paper explores the matrix modified Korteweg–de Vries (mKdV) integrable models using similarity transformations. The study employs the Lax pair formulation as a foundation, proposing pairs of similarity transformations to reduce the Lax pairs of the Ablowitz–Kaup–Newell–Segur matrix spectral problems, thereby deriving integrable matrix mKdV models. Four illustrative scenarios are discussed to present specific examples of these reduced integrable models.
期刊介绍:
Pramana - Journal of Physics is a monthly research journal in English published by the Indian Academy of Sciences in collaboration with Indian National Science Academy and Indian Physics Association. The journal publishes refereed papers covering current research in Physics, both original contributions - research papers, brief reports or rapid communications - and invited reviews. Pramana also publishes special issues devoted to advances in specific areas of Physics and proceedings of select high quality conferences.