系统认知服务技术对电网直流系统的监测识别效果分析

Q2 Energy
Xiaogang Wu, Xingwang Chen, Kun Zhang
{"title":"系统认知服务技术对电网直流系统的监测识别效果分析","authors":"Xiaogang Wu,&nbsp;Xingwang Chen,&nbsp;Kun Zhang","doi":"10.1186/s42162-025-00569-7","DOIUrl":null,"url":null,"abstract":"<div><p>In contemporary power grid infrastructure, the stability and health of DC systems are critical for uninterrupted energy delivery. As these systems become more complex, traditional monitoring methods are inadequate for detecting early warning signs and critical failures. Integration of cognitive service technologies provides promising capabilities for intelligent monitoring and fault detection in such systems. Despite the availability of raw sensor data, power grid operators struggle to accurately identify and predict faults in DC systems in real-time. The absence of intelligent classification and predictive mechanisms frequently results in a delayed response to system abnormalities, jeopardizing operational reliability. This research aims to develop a machine learning-based monitoring and identification framework for evaluating the operational status of DC systems using sensor-driven datasets. The primary goal is to predict the system’s health status—Healthy, Fault Detected, or Critical Fault—using electrical and environmental parameters. A new algorithm, SmartDC-FaultMonitor, is proposed for analyzing the SmartDC-Monitoring Dataset, which includes voltage, current, temperature, battery condition, communication signal strength, fault alarms, and load status. The methodology includes data preprocessing (missing value handling, encoding, and normalization), hybrid feature selection using Mutual Information and Recursive Feature Elimination (RFE), and classification with an ensemble voting classifier that combines a Light Gradient Boosting Machine (LightGBM), Categorical Boosting (CatBoost), and TabNet. Model tuning is done using grid search, and performance is measured on a hold-out test set. The proposed ensemble model achieved high-performance metrics on the test dataset, with an accuracy of 94.00%, precision of 93.75%, recall of 94.50%, F1-score of 94.12%, and a Matthews Correlation Coefficient (MCC) of 0.91. These results demonstrate the model’s ability to accurately classify system health statuses, including the early detection of critical faults. The study confirms the effectiveness of cognitive service technology in improving the monitoring and identification of DC power grid systems. The SmartDC-FaultMonitor algorithm provides a dependable and scalable approach for real-time fault detection, giving grid operators timely insights and enabling proactive maintenance in smart energy infrastructures.</p></div>","PeriodicalId":538,"journal":{"name":"Energy Informatics","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://energyinformatics.springeropen.com/counter/pdf/10.1186/s42162-025-00569-7","citationCount":"0","resultStr":"{\"title\":\"Analysis of the monitoring and identification effect of system cognitive service technology on DC system in power grid\",\"authors\":\"Xiaogang Wu,&nbsp;Xingwang Chen,&nbsp;Kun Zhang\",\"doi\":\"10.1186/s42162-025-00569-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In contemporary power grid infrastructure, the stability and health of DC systems are critical for uninterrupted energy delivery. As these systems become more complex, traditional monitoring methods are inadequate for detecting early warning signs and critical failures. Integration of cognitive service technologies provides promising capabilities for intelligent monitoring and fault detection in such systems. Despite the availability of raw sensor data, power grid operators struggle to accurately identify and predict faults in DC systems in real-time. The absence of intelligent classification and predictive mechanisms frequently results in a delayed response to system abnormalities, jeopardizing operational reliability. This research aims to develop a machine learning-based monitoring and identification framework for evaluating the operational status of DC systems using sensor-driven datasets. The primary goal is to predict the system’s health status—Healthy, Fault Detected, or Critical Fault—using electrical and environmental parameters. A new algorithm, SmartDC-FaultMonitor, is proposed for analyzing the SmartDC-Monitoring Dataset, which includes voltage, current, temperature, battery condition, communication signal strength, fault alarms, and load status. The methodology includes data preprocessing (missing value handling, encoding, and normalization), hybrid feature selection using Mutual Information and Recursive Feature Elimination (RFE), and classification with an ensemble voting classifier that combines a Light Gradient Boosting Machine (LightGBM), Categorical Boosting (CatBoost), and TabNet. Model tuning is done using grid search, and performance is measured on a hold-out test set. The proposed ensemble model achieved high-performance metrics on the test dataset, with an accuracy of 94.00%, precision of 93.75%, recall of 94.50%, F1-score of 94.12%, and a Matthews Correlation Coefficient (MCC) of 0.91. These results demonstrate the model’s ability to accurately classify system health statuses, including the early detection of critical faults. The study confirms the effectiveness of cognitive service technology in improving the monitoring and identification of DC power grid systems. The SmartDC-FaultMonitor algorithm provides a dependable and scalable approach for real-time fault detection, giving grid operators timely insights and enabling proactive maintenance in smart energy infrastructures.</p></div>\",\"PeriodicalId\":538,\"journal\":{\"name\":\"Energy Informatics\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://energyinformatics.springeropen.com/counter/pdf/10.1186/s42162-025-00569-7\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s42162-025-00569-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Informatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s42162-025-00569-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

摘要

在现代电网基础设施中,直流系统的稳定和健康对不间断供电至关重要。随着这些系统变得越来越复杂,传统的监测方法已不足以发现早期预警信号和重大故障。认知服务技术的集成为此类系统的智能监控和故障检测提供了有前途的能力。尽管原始传感器数据可用,电网运营商仍难以准确识别和预测直流系统的实时故障。缺乏智能分类和预测机制,往往会导致对系统异常的响应延迟,从而影响系统运行的可靠性。本研究旨在开发一种基于机器学习的监测和识别框架,用于使用传感器驱动的数据集评估直流系统的运行状态。主要目标是使用电气和环境参数预测系统的健康状态——健康、故障检测或严重故障。提出了一种新的算法——SmartDC-FaultMonitor,用于分析包括电压、电流、温度、电池状态、通信信号强度、故障告警和负载状态在内的SmartDC-Monitoring数据集。该方法包括数据预处理(缺失值处理、编码和归一化)、使用互信息和递归特征消除(RFE)的混合特征选择,以及使用集成投票分类器进行分类,该分类器结合了光梯度增强机(LightGBM)、分类增强(CatBoost)和TabNet。模型调优是使用网格搜索完成的,性能是在保留测试集上测量的。所提出的集成模型在测试数据集上实现了高性能的指标,准确率为94.00%,精密度为93.75%,召回率为94.50%,f1得分为94.12%,马修斯相关系数(MCC)为0.91。这些结果证明了该模型能够准确地对系统健康状态进行分类,包括对关键故障的早期检测。研究证实了认知服务技术在改进直流电网系统监测与识别方面的有效性。SmartDC-FaultMonitor算法为实时故障检测提供了一种可靠且可扩展的方法,为电网运营商提供及时的见解,并在智能能源基础设施中实现主动维护。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of the monitoring and identification effect of system cognitive service technology on DC system in power grid

In contemporary power grid infrastructure, the stability and health of DC systems are critical for uninterrupted energy delivery. As these systems become more complex, traditional monitoring methods are inadequate for detecting early warning signs and critical failures. Integration of cognitive service technologies provides promising capabilities for intelligent monitoring and fault detection in such systems. Despite the availability of raw sensor data, power grid operators struggle to accurately identify and predict faults in DC systems in real-time. The absence of intelligent classification and predictive mechanisms frequently results in a delayed response to system abnormalities, jeopardizing operational reliability. This research aims to develop a machine learning-based monitoring and identification framework for evaluating the operational status of DC systems using sensor-driven datasets. The primary goal is to predict the system’s health status—Healthy, Fault Detected, or Critical Fault—using electrical and environmental parameters. A new algorithm, SmartDC-FaultMonitor, is proposed for analyzing the SmartDC-Monitoring Dataset, which includes voltage, current, temperature, battery condition, communication signal strength, fault alarms, and load status. The methodology includes data preprocessing (missing value handling, encoding, and normalization), hybrid feature selection using Mutual Information and Recursive Feature Elimination (RFE), and classification with an ensemble voting classifier that combines a Light Gradient Boosting Machine (LightGBM), Categorical Boosting (CatBoost), and TabNet. Model tuning is done using grid search, and performance is measured on a hold-out test set. The proposed ensemble model achieved high-performance metrics on the test dataset, with an accuracy of 94.00%, precision of 93.75%, recall of 94.50%, F1-score of 94.12%, and a Matthews Correlation Coefficient (MCC) of 0.91. These results demonstrate the model’s ability to accurately classify system health statuses, including the early detection of critical faults. The study confirms the effectiveness of cognitive service technology in improving the monitoring and identification of DC power grid systems. The SmartDC-FaultMonitor algorithm provides a dependable and scalable approach for real-time fault detection, giving grid operators timely insights and enabling proactive maintenance in smart energy infrastructures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Informatics
Energy Informatics Computer Science-Computer Networks and Communications
CiteScore
5.50
自引率
0.00%
发文量
34
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信