{"title":"可压缩Navier-Stokes-Fourier方程一般Riemann解的时间渐近稳定性","authors":"Moon-Jin Kang, Alexis F. Vasseur, Yi Wang","doi":"10.1007/s00205-025-02116-w","DOIUrl":null,"url":null,"abstract":"<div><p>We establish the time-asymptotic stability of generic Riemann solutions to the one-dimensional compressible Navier–Stokes–Fourier equations. The Riemann solution under consideration is a generic combination of a shock, a contact discontinuity, and a rarefaction wave. We prove that the perturbed solution of Navier–Stokes–Fourier converges, uniformly in space as time goes to infinity, to an ansatz composed of viscous shock with time-dependent shift, a viscous contact wave and an inviscid rarefaction wave. This is a first resolution of the time-asymptotic stability of three waves of different kinds associated with the generic Riemann solutions. Our approach relies on the method of <i>a</i>-contraction with shifts and relative entropy, specifically applied to both the shock wave and the contact wave. It enables the application of a global energy method for the generic combination of three waves.\n</p></div>","PeriodicalId":55484,"journal":{"name":"Archive for Rational Mechanics and Analysis","volume":"249 4","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time-Asymptotic Stability of Generic Riemann Solutions for Compressible Navier–Stokes–Fourier Equations\",\"authors\":\"Moon-Jin Kang, Alexis F. Vasseur, Yi Wang\",\"doi\":\"10.1007/s00205-025-02116-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We establish the time-asymptotic stability of generic Riemann solutions to the one-dimensional compressible Navier–Stokes–Fourier equations. The Riemann solution under consideration is a generic combination of a shock, a contact discontinuity, and a rarefaction wave. We prove that the perturbed solution of Navier–Stokes–Fourier converges, uniformly in space as time goes to infinity, to an ansatz composed of viscous shock with time-dependent shift, a viscous contact wave and an inviscid rarefaction wave. This is a first resolution of the time-asymptotic stability of three waves of different kinds associated with the generic Riemann solutions. Our approach relies on the method of <i>a</i>-contraction with shifts and relative entropy, specifically applied to both the shock wave and the contact wave. It enables the application of a global energy method for the generic combination of three waves.\\n</p></div>\",\"PeriodicalId\":55484,\"journal\":{\"name\":\"Archive for Rational Mechanics and Analysis\",\"volume\":\"249 4\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive for Rational Mechanics and Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00205-025-02116-w\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Rational Mechanics and Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-025-02116-w","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Time-Asymptotic Stability of Generic Riemann Solutions for Compressible Navier–Stokes–Fourier Equations
We establish the time-asymptotic stability of generic Riemann solutions to the one-dimensional compressible Navier–Stokes–Fourier equations. The Riemann solution under consideration is a generic combination of a shock, a contact discontinuity, and a rarefaction wave. We prove that the perturbed solution of Navier–Stokes–Fourier converges, uniformly in space as time goes to infinity, to an ansatz composed of viscous shock with time-dependent shift, a viscous contact wave and an inviscid rarefaction wave. This is a first resolution of the time-asymptotic stability of three waves of different kinds associated with the generic Riemann solutions. Our approach relies on the method of a-contraction with shifts and relative entropy, specifically applied to both the shock wave and the contact wave. It enables the application of a global energy method for the generic combination of three waves.
期刊介绍:
The Archive for Rational Mechanics and Analysis nourishes the discipline of mechanics as a deductive, mathematical science in the classical tradition and promotes analysis, particularly in the context of application. Its purpose is to give rapid and full publication to research of exceptional moment, depth and permanence.