可压缩Navier-Stokes-Fourier方程一般Riemann解的时间渐近稳定性

IF 2.4 1区 数学 Q1 MATHEMATICS, APPLIED
Moon-Jin Kang, Alexis F. Vasseur, Yi Wang
{"title":"可压缩Navier-Stokes-Fourier方程一般Riemann解的时间渐近稳定性","authors":"Moon-Jin Kang,&nbsp;Alexis F. Vasseur,&nbsp;Yi Wang","doi":"10.1007/s00205-025-02116-w","DOIUrl":null,"url":null,"abstract":"<div><p>We establish the time-asymptotic stability of generic Riemann solutions to the one-dimensional compressible Navier–Stokes–Fourier equations. The Riemann solution under consideration is a generic combination of a shock, a contact discontinuity, and a rarefaction wave. We prove that the perturbed solution of Navier–Stokes–Fourier converges, uniformly in space as time goes to infinity, to an ansatz composed of viscous shock with time-dependent shift, a viscous contact wave and an inviscid rarefaction wave. This is a first resolution of the time-asymptotic stability of three waves of different kinds associated with the generic Riemann solutions. Our approach relies on the method of <i>a</i>-contraction with shifts and relative entropy, specifically applied to both the shock wave and the contact wave. It enables the application of a global energy method for the generic combination of three waves.\n</p></div>","PeriodicalId":55484,"journal":{"name":"Archive for Rational Mechanics and Analysis","volume":"249 4","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time-Asymptotic Stability of Generic Riemann Solutions for Compressible Navier–Stokes–Fourier Equations\",\"authors\":\"Moon-Jin Kang,&nbsp;Alexis F. Vasseur,&nbsp;Yi Wang\",\"doi\":\"10.1007/s00205-025-02116-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We establish the time-asymptotic stability of generic Riemann solutions to the one-dimensional compressible Navier–Stokes–Fourier equations. The Riemann solution under consideration is a generic combination of a shock, a contact discontinuity, and a rarefaction wave. We prove that the perturbed solution of Navier–Stokes–Fourier converges, uniformly in space as time goes to infinity, to an ansatz composed of viscous shock with time-dependent shift, a viscous contact wave and an inviscid rarefaction wave. This is a first resolution of the time-asymptotic stability of three waves of different kinds associated with the generic Riemann solutions. Our approach relies on the method of <i>a</i>-contraction with shifts and relative entropy, specifically applied to both the shock wave and the contact wave. It enables the application of a global energy method for the generic combination of three waves.\\n</p></div>\",\"PeriodicalId\":55484,\"journal\":{\"name\":\"Archive for Rational Mechanics and Analysis\",\"volume\":\"249 4\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive for Rational Mechanics and Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00205-025-02116-w\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Rational Mechanics and Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-025-02116-w","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

建立了一维可压缩Navier-Stokes-Fourier方程一般Riemann解的时间渐近稳定性。所考虑的黎曼解是激波、接触不连续和稀薄波的一般组合。证明了当时间趋于无穷时,Navier-Stokes-Fourier的摄动解在空间上均匀收敛于一个由具有时相关位移的粘性激波、粘性接触波和非粘性稀疏波组成的解。这是与一般黎曼解相关的三种不同类型波的时间渐近稳定性的第一个解析。我们的方法依赖于具有位移和相对熵的a-收缩方法,特别适用于激波和接触波。它使三波的一般组合的全球能量方法的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time-Asymptotic Stability of Generic Riemann Solutions for Compressible Navier–Stokes–Fourier Equations

We establish the time-asymptotic stability of generic Riemann solutions to the one-dimensional compressible Navier–Stokes–Fourier equations. The Riemann solution under consideration is a generic combination of a shock, a contact discontinuity, and a rarefaction wave. We prove that the perturbed solution of Navier–Stokes–Fourier converges, uniformly in space as time goes to infinity, to an ansatz composed of viscous shock with time-dependent shift, a viscous contact wave and an inviscid rarefaction wave. This is a first resolution of the time-asymptotic stability of three waves of different kinds associated with the generic Riemann solutions. Our approach relies on the method of a-contraction with shifts and relative entropy, specifically applied to both the shock wave and the contact wave. It enables the application of a global energy method for the generic combination of three waves.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.10
自引率
8.00%
发文量
98
审稿时长
4-8 weeks
期刊介绍: The Archive for Rational Mechanics and Analysis nourishes the discipline of mechanics as a deductive, mathematical science in the classical tradition and promotes analysis, particularly in the context of application. Its purpose is to give rapid and full publication to research of exceptional moment, depth and permanence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信