利用直接法设计光引力日地系统的传递轨迹

IF 1.6 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS
Jai Kumar, Laxmi Kant, Mohd. Arif
{"title":"利用直接法设计光引力日地系统的传递轨迹","authors":"Jai Kumar,&nbsp;Laxmi Kant,&nbsp;Mohd. Arif","doi":"10.1007/s12036-025-10074-8","DOIUrl":null,"url":null,"abstract":"<div><p>This study employs a direct approach to construct transfer trajectories within photo-gravitational Sun–Earth system and by considering the Earth as an oblate primary in circular-restricted three-body problem (CRTBP). Specifically, it explores transfer trajectories of a spacecraft from an Earth-centred parking orbit to a halo orbit near Lagrangian point in photo-gravitational CRTBP framework. In this work, the Chebyshev collocation method (CCM) is used in combination with differential correction (DC) method to construct transfer trajectories. To compensate for the absence of a general analytical solution in the photo-gravitational CRTBP, this method uses the CCM to produce a trustworthy starting approximation. The DC method is then used to improve the approximation to the required precision for the trajectories. For a comprehensive analysis, we consider six times-of-flight (TOF) durations ranging from 100 to 200 days, with increments of 20 days (i.e., 100, 120, 140, 160, 180 and 200 days). For each TOF, we compute the departure velocities required from the Earth-centred parking orbit and the insertion velocities at the halo orbits. These computations enable us to generate detailed velocity profiles and assess the propulsive demands of different transfer durations. Additionally, we investigate the influence of out-of-plane amplitude <span>\\({A}_{z}\\)</span> of the halo orbits on maneuver costs. We consider five halo orbits with varying values of <span>\\({A}_{z}\\,(1.1\\times {10}^{5}, 2.0\\times {10}^{5}, 3.0\\times {10}^{5}, 4.0\\times {10}^{5}\\text{ and }5.0\\times {10}^{5}\\text{ km})\\)</span> to analyse how the size and shape of halo orbit affect the required velocity changes (Δ<i>V</i>). The study quantifies the total velocity magnitude necessary for the spacecraft’s insertion onto the transfer path. We also implement the coordinate transformation of the state vector of spacecraft from the Sun–Earth barycentric rotating frame to the Earth-centred inertial J2000 frame.</p></div>","PeriodicalId":610,"journal":{"name":"Journal of Astrophysics and Astronomy","volume":"46 2","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transfer trajectory design using direct method in photo-gravitational Sun–Earth system\",\"authors\":\"Jai Kumar,&nbsp;Laxmi Kant,&nbsp;Mohd. Arif\",\"doi\":\"10.1007/s12036-025-10074-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study employs a direct approach to construct transfer trajectories within photo-gravitational Sun–Earth system and by considering the Earth as an oblate primary in circular-restricted three-body problem (CRTBP). Specifically, it explores transfer trajectories of a spacecraft from an Earth-centred parking orbit to a halo orbit near Lagrangian point in photo-gravitational CRTBP framework. In this work, the Chebyshev collocation method (CCM) is used in combination with differential correction (DC) method to construct transfer trajectories. To compensate for the absence of a general analytical solution in the photo-gravitational CRTBP, this method uses the CCM to produce a trustworthy starting approximation. The DC method is then used to improve the approximation to the required precision for the trajectories. For a comprehensive analysis, we consider six times-of-flight (TOF) durations ranging from 100 to 200 days, with increments of 20 days (i.e., 100, 120, 140, 160, 180 and 200 days). For each TOF, we compute the departure velocities required from the Earth-centred parking orbit and the insertion velocities at the halo orbits. These computations enable us to generate detailed velocity profiles and assess the propulsive demands of different transfer durations. Additionally, we investigate the influence of out-of-plane amplitude <span>\\\\({A}_{z}\\\\)</span> of the halo orbits on maneuver costs. We consider five halo orbits with varying values of <span>\\\\({A}_{z}\\\\,(1.1\\\\times {10}^{5}, 2.0\\\\times {10}^{5}, 3.0\\\\times {10}^{5}, 4.0\\\\times {10}^{5}\\\\text{ and }5.0\\\\times {10}^{5}\\\\text{ km})\\\\)</span> to analyse how the size and shape of halo orbit affect the required velocity changes (Δ<i>V</i>). The study quantifies the total velocity magnitude necessary for the spacecraft’s insertion onto the transfer path. We also implement the coordinate transformation of the state vector of spacecraft from the Sun–Earth barycentric rotating frame to the Earth-centred inertial J2000 frame.</p></div>\",\"PeriodicalId\":610,\"journal\":{\"name\":\"Journal of Astrophysics and Astronomy\",\"volume\":\"46 2\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Astrophysics and Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12036-025-10074-8\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Astrophysics and Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s12036-025-10074-8","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用直接方法在光引力太阳-地球系统中构建转移轨迹,并将地球视为圆限制三体问题(CRTBP)中的扁主。具体来说,它探索了在光引力CRTBP框架下航天器从以地球为中心的停泊轨道到拉格朗日点附近的晕轨道的转移轨迹。在这项工作中,将切比雪夫配置法(CCM)与差分校正法(DC)相结合来构建转移轨迹。为了弥补光引力CRTBP中一般解析解的缺失,该方法使用CCM来产生可信的起始近似。然后使用直流方法来提高轨迹的逼近精度。为了进行全面分析,我们考虑6次飞行时间(TOF)持续时间,范围从100天到200天,增量为20天(即100、120、140、160、180和200天)。对于每个TOF,我们计算了从以地球为中心的停车轨道出发所需的速度和在晕轨道上的插入速度。这些计算使我们能够生成详细的速度分布,并评估不同转移持续时间的推进需求。此外,我们还研究了光晕轨道的面外振幅\({A}_{z}\)对机动成本的影响。我们考虑了5个具有不同\({A}_{z}\,(1.1\times {10}^{5}, 2.0\times {10}^{5}, 3.0\times {10}^{5}, 4.0\times {10}^{5}\text{ and }5.0\times {10}^{5}\text{ km})\)值的光晕轨道,以分析光晕轨道的大小和形状如何影响所需的速度变化(ΔV)。该研究量化了航天器进入转移路径所需的总速度大小。实现了航天器从日地重心旋转坐标系到地惯性J2000坐标系的状态矢量坐标变换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transfer trajectory design using direct method in photo-gravitational Sun–Earth system

This study employs a direct approach to construct transfer trajectories within photo-gravitational Sun–Earth system and by considering the Earth as an oblate primary in circular-restricted three-body problem (CRTBP). Specifically, it explores transfer trajectories of a spacecraft from an Earth-centred parking orbit to a halo orbit near Lagrangian point in photo-gravitational CRTBP framework. In this work, the Chebyshev collocation method (CCM) is used in combination with differential correction (DC) method to construct transfer trajectories. To compensate for the absence of a general analytical solution in the photo-gravitational CRTBP, this method uses the CCM to produce a trustworthy starting approximation. The DC method is then used to improve the approximation to the required precision for the trajectories. For a comprehensive analysis, we consider six times-of-flight (TOF) durations ranging from 100 to 200 days, with increments of 20 days (i.e., 100, 120, 140, 160, 180 and 200 days). For each TOF, we compute the departure velocities required from the Earth-centred parking orbit and the insertion velocities at the halo orbits. These computations enable us to generate detailed velocity profiles and assess the propulsive demands of different transfer durations. Additionally, we investigate the influence of out-of-plane amplitude \({A}_{z}\) of the halo orbits on maneuver costs. We consider five halo orbits with varying values of \({A}_{z}\,(1.1\times {10}^{5}, 2.0\times {10}^{5}, 3.0\times {10}^{5}, 4.0\times {10}^{5}\text{ and }5.0\times {10}^{5}\text{ km})\) to analyse how the size and shape of halo orbit affect the required velocity changes (ΔV). The study quantifies the total velocity magnitude necessary for the spacecraft’s insertion onto the transfer path. We also implement the coordinate transformation of the state vector of spacecraft from the Sun–Earth barycentric rotating frame to the Earth-centred inertial J2000 frame.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Astrophysics and Astronomy
Journal of Astrophysics and Astronomy 地学天文-天文与天体物理
CiteScore
1.80
自引率
9.10%
发文量
84
审稿时长
>12 weeks
期刊介绍: The journal publishes original research papers on all aspects of astrophysics and astronomy, including instrumentation, laboratory astrophysics, and cosmology. Critical reviews of topical fields are also published. Articles submitted as letters will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信