{"title":"明胶/西伯利亚蓼多糖生物活性纳米纤维海绵的一步制备及交联快速止血和感染伤口愈合","authors":"Jing Wang, Ziyi Zhou, Xiaopei Zhang, Manfei Fu, Kuanjun Fang, Yuanfei Wang, Tong Wu","doi":"10.1007/s42765-025-00545-6","DOIUrl":null,"url":null,"abstract":"<div><p>The occurrence of uncontrolled hemorrhage and wound infection represents a significant cause of mortality in military and clinical settings, particularly in instances of traumatic injury. In this regard, developing an effective method to facilitate rapid hemostasis and treat infected wounds is of significant importance and value. In this study, we developed a novel strategy for the one-step manufacturing and crosslinking of gelatin (Gel)/<i>Polygonum sibiricum</i> polysaccharide (PSP) bioactive nanofibrous sponge through electrospinning with a homemade liquid vortex collector. Attributed to the addition of a specific ratio of tannic acid (TA) in the electrospinning solution, the resulting gelatin-tannic acid-<i>Polygonum sibiricum</i> polysaccharide (GelTa-PSP) nanofibrous sponges can be in-situ crosslinked during the electrospinning process and easily collected in the expected shape and size, without the need for any toxic crosslinking agent for post-treatment. We demonstrate that GelTa-PSP nanofibrous sponges possess excellent water absorption and hemostatic properties, adequate antimicrobial activity, and favorable biocompatibility. Specifically, the GelTa-PSP nanofibrous sponges encourage blood cell adhesion and exhibit strong hemostatic capabilities. In comparison to medical gauze, the GelTa-PSP nanofibrous sponges provide effective procoagulant function and hemostatic impact in rat tail-breaking and liver injury models. Moreover, due to the bioactivity of Chinese herbal medicine flavonoid polysaccharides, the GelTa-PSP nanofibrous sponges demonstrated enhanced performance in wound healing of infected rats. These findings suggest that GelTa-PSP nanofibrous sponges hold significant potential as a biomaterial for clinical applications in hemostasis and wound healing.</p><h3>Graphical Abstract</h3><p>Schematic illustration showing the preparation of GelTa-PSP nanofibrous sponges and its application for rapid hemostasis and infected wound healing</p>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"7 4","pages":"1148 - 1164"},"PeriodicalIF":21.3000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"One-Step Manufacture and Crosslinking of Gelatin/Polygonum sibiricum Polysaccharide Bioactive Nanofibrous Sponges for Rapid Hemostasis and Infected Wound Healing\",\"authors\":\"Jing Wang, Ziyi Zhou, Xiaopei Zhang, Manfei Fu, Kuanjun Fang, Yuanfei Wang, Tong Wu\",\"doi\":\"10.1007/s42765-025-00545-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The occurrence of uncontrolled hemorrhage and wound infection represents a significant cause of mortality in military and clinical settings, particularly in instances of traumatic injury. In this regard, developing an effective method to facilitate rapid hemostasis and treat infected wounds is of significant importance and value. In this study, we developed a novel strategy for the one-step manufacturing and crosslinking of gelatin (Gel)/<i>Polygonum sibiricum</i> polysaccharide (PSP) bioactive nanofibrous sponge through electrospinning with a homemade liquid vortex collector. Attributed to the addition of a specific ratio of tannic acid (TA) in the electrospinning solution, the resulting gelatin-tannic acid-<i>Polygonum sibiricum</i> polysaccharide (GelTa-PSP) nanofibrous sponges can be in-situ crosslinked during the electrospinning process and easily collected in the expected shape and size, without the need for any toxic crosslinking agent for post-treatment. We demonstrate that GelTa-PSP nanofibrous sponges possess excellent water absorption and hemostatic properties, adequate antimicrobial activity, and favorable biocompatibility. Specifically, the GelTa-PSP nanofibrous sponges encourage blood cell adhesion and exhibit strong hemostatic capabilities. In comparison to medical gauze, the GelTa-PSP nanofibrous sponges provide effective procoagulant function and hemostatic impact in rat tail-breaking and liver injury models. Moreover, due to the bioactivity of Chinese herbal medicine flavonoid polysaccharides, the GelTa-PSP nanofibrous sponges demonstrated enhanced performance in wound healing of infected rats. These findings suggest that GelTa-PSP nanofibrous sponges hold significant potential as a biomaterial for clinical applications in hemostasis and wound healing.</p><h3>Graphical Abstract</h3><p>Schematic illustration showing the preparation of GelTa-PSP nanofibrous sponges and its application for rapid hemostasis and infected wound healing</p>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":459,\"journal\":{\"name\":\"Advanced Fiber Materials\",\"volume\":\"7 4\",\"pages\":\"1148 - 1164\"},\"PeriodicalIF\":21.3000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Fiber Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42765-025-00545-6\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Fiber Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42765-025-00545-6","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
One-Step Manufacture and Crosslinking of Gelatin/Polygonum sibiricum Polysaccharide Bioactive Nanofibrous Sponges for Rapid Hemostasis and Infected Wound Healing
The occurrence of uncontrolled hemorrhage and wound infection represents a significant cause of mortality in military and clinical settings, particularly in instances of traumatic injury. In this regard, developing an effective method to facilitate rapid hemostasis and treat infected wounds is of significant importance and value. In this study, we developed a novel strategy for the one-step manufacturing and crosslinking of gelatin (Gel)/Polygonum sibiricum polysaccharide (PSP) bioactive nanofibrous sponge through electrospinning with a homemade liquid vortex collector. Attributed to the addition of a specific ratio of tannic acid (TA) in the electrospinning solution, the resulting gelatin-tannic acid-Polygonum sibiricum polysaccharide (GelTa-PSP) nanofibrous sponges can be in-situ crosslinked during the electrospinning process and easily collected in the expected shape and size, without the need for any toxic crosslinking agent for post-treatment. We demonstrate that GelTa-PSP nanofibrous sponges possess excellent water absorption and hemostatic properties, adequate antimicrobial activity, and favorable biocompatibility. Specifically, the GelTa-PSP nanofibrous sponges encourage blood cell adhesion and exhibit strong hemostatic capabilities. In comparison to medical gauze, the GelTa-PSP nanofibrous sponges provide effective procoagulant function and hemostatic impact in rat tail-breaking and liver injury models. Moreover, due to the bioactivity of Chinese herbal medicine flavonoid polysaccharides, the GelTa-PSP nanofibrous sponges demonstrated enhanced performance in wound healing of infected rats. These findings suggest that GelTa-PSP nanofibrous sponges hold significant potential as a biomaterial for clinical applications in hemostasis and wound healing.
Graphical Abstract
Schematic illustration showing the preparation of GelTa-PSP nanofibrous sponges and its application for rapid hemostasis and infected wound healing
期刊介绍:
Advanced Fiber Materials is a hybrid, peer-reviewed, international and interdisciplinary research journal which aims to publish the most important papers in fibers and fiber-related devices as well as their applications.Indexed by SCIE, EI, Scopus et al.
Publishing on fiber or fiber-related materials, technology, engineering and application.