低纬度电离层太阳耀斑诱导总电子含量的季节依赖性

IF 1.8 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS
Suniti Saharan, Jagrit Purohit, Mahesh N. Shrivastava, Adarsh Dube, Sudipta Sasmal, Abhirup Datta, Ajeet K. Maurya, Himani Sharma
{"title":"低纬度电离层太阳耀斑诱导总电子含量的季节依赖性","authors":"Suniti Saharan,&nbsp;Jagrit Purohit,&nbsp;Mahesh N. Shrivastava,&nbsp;Adarsh Dube,&nbsp;Sudipta Sasmal,&nbsp;Abhirup Datta,&nbsp;Ajeet K. Maurya,&nbsp;Himani Sharma","doi":"10.1007/s10509-025-04464-1","DOIUrl":null,"url":null,"abstract":"<div><p>Solar flares represent a significant element in the broader context of space weather phenomena, exerting a direct influence on the Earth’s ionosphere. The ionosphere is a region of the Earth’s atmosphere that is ionized by solar radiation, which also undergoes seasonal changes. The present study is concerned with elucidating the seasonal fluctuations in differential vertical total electron content (DVTEC) of the ionosphere during solar flare events of solar cycle 24. The present study examines M and C solar flares during the ascending (2013), peak (2014), and descending phases (2015) of solar cycle 24. A total of 207 solar flare events were observed over a three-year period. The IISC is the low-latitude GNSS site in Bangalore, India (geographic latitude 13.02°N, geographic longitude 77.57°E) was utilized for this study. The results indicate the presence of an anomalous winter phenomenon in 2014, as well as a peak in DVTEC during the winter season. The recombination process, which involves the O/N<sub>2</sub> ratio, is responsible for the higher <span>\\(\\Delta \\)</span>DVTEC observed during the winter season. Additionally, modifications to dissociation-recombination during the summer season and vertical advection in the F layer contributed to the 2014 winter anomaly. Among the solar indices examined, a correlation of 0.45, between d(EUV flux)/dt and <span>\\(\\Delta \\)</span>DVTEC, indicating EUV flux as the primary source of ionization in the ionosphere.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":"370 7","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seasonal dependence of solar flare induced Total Electron Content over low latitude ionosphere\",\"authors\":\"Suniti Saharan,&nbsp;Jagrit Purohit,&nbsp;Mahesh N. Shrivastava,&nbsp;Adarsh Dube,&nbsp;Sudipta Sasmal,&nbsp;Abhirup Datta,&nbsp;Ajeet K. Maurya,&nbsp;Himani Sharma\",\"doi\":\"10.1007/s10509-025-04464-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Solar flares represent a significant element in the broader context of space weather phenomena, exerting a direct influence on the Earth’s ionosphere. The ionosphere is a region of the Earth’s atmosphere that is ionized by solar radiation, which also undergoes seasonal changes. The present study is concerned with elucidating the seasonal fluctuations in differential vertical total electron content (DVTEC) of the ionosphere during solar flare events of solar cycle 24. The present study examines M and C solar flares during the ascending (2013), peak (2014), and descending phases (2015) of solar cycle 24. A total of 207 solar flare events were observed over a three-year period. The IISC is the low-latitude GNSS site in Bangalore, India (geographic latitude 13.02°N, geographic longitude 77.57°E) was utilized for this study. The results indicate the presence of an anomalous winter phenomenon in 2014, as well as a peak in DVTEC during the winter season. The recombination process, which involves the O/N<sub>2</sub> ratio, is responsible for the higher <span>\\\\(\\\\Delta \\\\)</span>DVTEC observed during the winter season. Additionally, modifications to dissociation-recombination during the summer season and vertical advection in the F layer contributed to the 2014 winter anomaly. Among the solar indices examined, a correlation of 0.45, between d(EUV flux)/dt and <span>\\\\(\\\\Delta \\\\)</span>DVTEC, indicating EUV flux as the primary source of ionization in the ionosphere.</p></div>\",\"PeriodicalId\":8644,\"journal\":{\"name\":\"Astrophysics and Space Science\",\"volume\":\"370 7\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrophysics and Space Science\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10509-025-04464-1\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysics and Space Science","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10509-025-04464-1","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

太阳耀斑在更广泛的空间天气现象中是一个重要因素,对地球电离层产生直接影响。电离层是地球大气中被太阳辐射电离的区域,它也会经历季节变化。本文研究了第24太阳活动周期太阳耀斑事件中电离层垂直总电子含量(DVTEC)的季节波动。本研究考察了第24太阳周期上升阶段(2013年)、高峰阶段(2014年)和下降阶段(2015年)的M和C太阳耀斑。在三年的时间里共观测到207次太阳耀斑事件。IISC是位于印度班加罗尔(地理纬度13.02°N,地理经度77.57°E)的低纬度GNSS站点。结果表明,2014年存在冬季异常现象,冬季DVTEC出现高峰。与O/N2比有关的重组过程是冬季观测到的较高\(\Delta \) DVTEC的原因。此外,夏季解离重组的变化和F层垂直平流对2014年冬季异常也有影响。在研究的太阳指数中,d(EUV通量)/dt与\(\Delta \) DVTEC之间的相关性为0.45,表明EUV通量是电离层中电离的主要来源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Seasonal dependence of solar flare induced Total Electron Content over low latitude ionosphere

Solar flares represent a significant element in the broader context of space weather phenomena, exerting a direct influence on the Earth’s ionosphere. The ionosphere is a region of the Earth’s atmosphere that is ionized by solar radiation, which also undergoes seasonal changes. The present study is concerned with elucidating the seasonal fluctuations in differential vertical total electron content (DVTEC) of the ionosphere during solar flare events of solar cycle 24. The present study examines M and C solar flares during the ascending (2013), peak (2014), and descending phases (2015) of solar cycle 24. A total of 207 solar flare events were observed over a three-year period. The IISC is the low-latitude GNSS site in Bangalore, India (geographic latitude 13.02°N, geographic longitude 77.57°E) was utilized for this study. The results indicate the presence of an anomalous winter phenomenon in 2014, as well as a peak in DVTEC during the winter season. The recombination process, which involves the O/N2 ratio, is responsible for the higher \(\Delta \)DVTEC observed during the winter season. Additionally, modifications to dissociation-recombination during the summer season and vertical advection in the F layer contributed to the 2014 winter anomaly. Among the solar indices examined, a correlation of 0.45, between d(EUV flux)/dt and \(\Delta \)DVTEC, indicating EUV flux as the primary source of ionization in the ionosphere.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Astrophysics and Space Science
Astrophysics and Space Science 地学天文-天文与天体物理
CiteScore
3.40
自引率
5.30%
发文量
106
审稿时长
2-4 weeks
期刊介绍: Astrophysics and Space Science publishes original contributions and invited reviews covering the entire range of astronomy, astrophysics, astrophysical cosmology, planetary and space science and the astrophysical aspects of astrobiology. This includes both observational and theoretical research, the techniques of astronomical instrumentation and data analysis and astronomical space instrumentation. We particularly welcome papers in the general fields of high-energy astrophysics, astrophysical and astrochemical studies of the interstellar medium including star formation, planetary astrophysics, the formation and evolution of galaxies and the evolution of large scale structure in the Universe. Papers in mathematical physics or in general relativity which do not establish clear astrophysical applications will no longer be considered. The journal also publishes topically selected special issues in research fields of particular scientific interest. These consist of both invited reviews and original research papers. Conference proceedings will not be considered. All papers published in the journal are subject to thorough and strict peer-reviewing. Astrophysics and Space Science features short publication times after acceptance and colour printing free of charge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信