从恒星光到天体物理洞察:用机器学习自动化变星研究

IF 1.8 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS
Jeroen Audenaert
{"title":"从恒星光到天体物理洞察:用机器学习自动化变星研究","authors":"Jeroen Audenaert","doi":"10.1007/s10509-025-04460-5","DOIUrl":null,"url":null,"abstract":"<div><p>Large-scale photometric surveys are revolutionizing astronomy by delivering unprecedented amounts of data. The rich data sets from missions such as the NASA <i>Kepler</i> and TESS satellites, and the upcoming ESA PLATO mission, are a treasure trove for stellar variability, asteroseismology and exoplanet studies. In order to unlock the full scientific potential of these massive data sets, automated data-driven methods are needed. In this review, I illustrate how machine learning is bringing asteroseismology toward an era of automated scientific discovery, covering the full cycle from data cleaning to variability classification and parameter inference, while highlighting the recent advances in representation learning, multimodal datasets and foundation models. This invited review offers a guide to the challenges and opportunities machine learning brings for stellar variability research and how it could help unlock new frontiers in time-domain astronomy.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":"370 7","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10509-025-04460-5.pdf","citationCount":"0","resultStr":"{\"title\":\"From stellar light to astrophysical insight: automating variable star research with machine learning\",\"authors\":\"Jeroen Audenaert\",\"doi\":\"10.1007/s10509-025-04460-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Large-scale photometric surveys are revolutionizing astronomy by delivering unprecedented amounts of data. The rich data sets from missions such as the NASA <i>Kepler</i> and TESS satellites, and the upcoming ESA PLATO mission, are a treasure trove for stellar variability, asteroseismology and exoplanet studies. In order to unlock the full scientific potential of these massive data sets, automated data-driven methods are needed. In this review, I illustrate how machine learning is bringing asteroseismology toward an era of automated scientific discovery, covering the full cycle from data cleaning to variability classification and parameter inference, while highlighting the recent advances in representation learning, multimodal datasets and foundation models. This invited review offers a guide to the challenges and opportunities machine learning brings for stellar variability research and how it could help unlock new frontiers in time-domain astronomy.</p></div>\",\"PeriodicalId\":8644,\"journal\":{\"name\":\"Astrophysics and Space Science\",\"volume\":\"370 7\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10509-025-04460-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrophysics and Space Science\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10509-025-04460-5\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysics and Space Science","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10509-025-04460-5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

大规模光度测量通过提供前所未有的大量数据,正在彻底改变天文学。来自NASA开普勒和TESS卫星以及即将到来的ESA PLATO任务等任务的丰富数据集是恒星变异性、星震学和系外行星研究的宝库。为了释放这些海量数据集的全部科学潜力,需要自动化的数据驱动方法。在这篇综述中,我阐述了机器学习如何将星震学带入自动化科学发现的时代,涵盖了从数据清理到可变性分类和参数推断的整个周期,同时强调了表征学习、多模态数据集和基础模型的最新进展。这篇特邀评论为机器学习为恒星变异性研究带来的挑战和机遇以及它如何帮助开辟时域天文学的新领域提供了指南。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
From stellar light to astrophysical insight: automating variable star research with machine learning

Large-scale photometric surveys are revolutionizing astronomy by delivering unprecedented amounts of data. The rich data sets from missions such as the NASA Kepler and TESS satellites, and the upcoming ESA PLATO mission, are a treasure trove for stellar variability, asteroseismology and exoplanet studies. In order to unlock the full scientific potential of these massive data sets, automated data-driven methods are needed. In this review, I illustrate how machine learning is bringing asteroseismology toward an era of automated scientific discovery, covering the full cycle from data cleaning to variability classification and parameter inference, while highlighting the recent advances in representation learning, multimodal datasets and foundation models. This invited review offers a guide to the challenges and opportunities machine learning brings for stellar variability research and how it could help unlock new frontiers in time-domain astronomy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Astrophysics and Space Science
Astrophysics and Space Science 地学天文-天文与天体物理
CiteScore
3.40
自引率
5.30%
发文量
106
审稿时长
2-4 weeks
期刊介绍: Astrophysics and Space Science publishes original contributions and invited reviews covering the entire range of astronomy, astrophysics, astrophysical cosmology, planetary and space science and the astrophysical aspects of astrobiology. This includes both observational and theoretical research, the techniques of astronomical instrumentation and data analysis and astronomical space instrumentation. We particularly welcome papers in the general fields of high-energy astrophysics, astrophysical and astrochemical studies of the interstellar medium including star formation, planetary astrophysics, the formation and evolution of galaxies and the evolution of large scale structure in the Universe. Papers in mathematical physics or in general relativity which do not establish clear astrophysical applications will no longer be considered. The journal also publishes topically selected special issues in research fields of particular scientific interest. These consist of both invited reviews and original research papers. Conference proceedings will not be considered. All papers published in the journal are subject to thorough and strict peer-reviewing. Astrophysics and Space Science features short publication times after acceptance and colour printing free of charge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信