具有一般奇异核和跳跃的随机Volterra积分方程的适定性、解的正则性和\(\theta \) -Euler-Maruyama格式

IF 0.3 Q4 MATHEMATICS
Phan Thi Huong, Hoang-Long Ngo, Peter Kloeden
{"title":"具有一般奇异核和跳跃的随机Volterra积分方程的适定性、解的正则性和\\(\\theta \\) -Euler-Maruyama格式","authors":"Phan Thi Huong,&nbsp;Hoang-Long Ngo,&nbsp;Peter Kloeden","doi":"10.1007/s40306-025-00566-8","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider a class of stochastic Volterra integral equations with general singular kernels, driven by a Brownian motion and a pure jump Lévy process. We first show that these equations have a unique strong solution under certain regular conditions on their coefficients. Furthermore, the solutions of this equation depend continuously on the initial value and on the kernels <i>k</i>, <span>\\(k_B\\)</span>, and <span>\\(k_Z\\)</span>. We will then show the regularity of solutions for these equations. Finally, we propose a <span>\\(\\theta \\)</span>-Euler-Maruyama approximation scheme for these equations and demonstrate its convergence at a certain rate in the <span>\\(L^2\\)</span>-norm. Some numerical simulations is also presented to support for the theoretical results.</p></div>","PeriodicalId":45527,"journal":{"name":"Acta Mathematica Vietnamica","volume":"50 2","pages":"173 - 195"},"PeriodicalIF":0.3000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Well-posedness, Regularity of Solutions and the \\\\(\\\\theta \\\\)-Euler-Maruyama Scheme for Stochastic Volterra Integral Equations with General Singular Kernels and Jumps\",\"authors\":\"Phan Thi Huong,&nbsp;Hoang-Long Ngo,&nbsp;Peter Kloeden\",\"doi\":\"10.1007/s40306-025-00566-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we consider a class of stochastic Volterra integral equations with general singular kernels, driven by a Brownian motion and a pure jump Lévy process. We first show that these equations have a unique strong solution under certain regular conditions on their coefficients. Furthermore, the solutions of this equation depend continuously on the initial value and on the kernels <i>k</i>, <span>\\\\(k_B\\\\)</span>, and <span>\\\\(k_Z\\\\)</span>. We will then show the regularity of solutions for these equations. Finally, we propose a <span>\\\\(\\\\theta \\\\)</span>-Euler-Maruyama approximation scheme for these equations and demonstrate its convergence at a certain rate in the <span>\\\\(L^2\\\\)</span>-norm. Some numerical simulations is also presented to support for the theoretical results.</p></div>\",\"PeriodicalId\":45527,\"journal\":{\"name\":\"Acta Mathematica Vietnamica\",\"volume\":\"50 2\",\"pages\":\"173 - 195\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Vietnamica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40306-025-00566-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Vietnamica","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40306-025-00566-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑了一类具有广义奇异核的随机Volterra积分方程,该方程由一个布朗运动和一个纯跳变过程驱动。我们首先证明了这些方程在其系数的一定正则条件下具有唯一的强解。此外,该方程的解连续依赖于初值和核k, \(k_B\)和\(k_Z\)。然后我们将展示这些方程的解的规律性。最后,我们提出了这些方程的\(\theta \) -Euler-Maruyama近似格式,并在\(L^2\) -范数中证明了它的收敛速度。数值模拟结果也支持了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Well-posedness, Regularity of Solutions and the \(\theta \)-Euler-Maruyama Scheme for Stochastic Volterra Integral Equations with General Singular Kernels and Jumps

In this paper, we consider a class of stochastic Volterra integral equations with general singular kernels, driven by a Brownian motion and a pure jump Lévy process. We first show that these equations have a unique strong solution under certain regular conditions on their coefficients. Furthermore, the solutions of this equation depend continuously on the initial value and on the kernels k, \(k_B\), and \(k_Z\). We will then show the regularity of solutions for these equations. Finally, we propose a \(\theta \)-Euler-Maruyama approximation scheme for these equations and demonstrate its convergence at a certain rate in the \(L^2\)-norm. Some numerical simulations is also presented to support for the theoretical results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
23
期刊介绍: Acta Mathematica Vietnamica is a peer-reviewed mathematical journal. The journal publishes original papers of high quality in all branches of Mathematics with strong focus on Algebraic Geometry and Commutative Algebra, Algebraic Topology, Complex Analysis, Dynamical Systems, Optimization and Partial Differential Equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信