Kourosh Shahryarinia, Mohammad Omidalizarandi, Mohammadreza Heidarianbaei, Mohammad Ali Sharifi, Ingo Neumann
{"title":"基于深度学习模型的inSAR持久散射体时间序列变化点检测","authors":"Kourosh Shahryarinia, Mohammad Omidalizarandi, Mohammadreza Heidarianbaei, Mohammad Ali Sharifi, Ingo Neumann","doi":"10.1007/s12518-025-00621-x","DOIUrl":null,"url":null,"abstract":"<div><p>Accurately detecting significant changes in the Earth’s surface is essential for timely intervention. As a key techniques in Interferometric Synthetic Aperture Radar (InSAR), Persistent Scatterer Interferometry (PSI) generates time series data of Persistent Scatterers (PS), which are stable points on the Earth’s surface that enable precise displacement measurements over time. While many studies have focused on statistical methods for identifying anomalies in PS time series, few have explored the potential of deep learning for change point (CP) detection. A major challenge with supervised deep learning is the need for large labeled datasets. To overcome this, we implemented a simulation algorithm to generate an extensive set of PS points with corresponding target CPs, reflecting the statistical characteristics of PS time series. To identify changes in slope and intercept, We used two deep learning models: Bidirectional Long Short-Term Memory (BiLSTM), designed for time series data, and U-Net, developed for image data. A spectral analysis technique is applied to remove seasonal components from the time series data before feeding into the networks. The models were evaluated using metrics such as F1-score, precision, and recall, and were compared to a Bayesian-based approach. Additionally, the methodology was applied to real PS time series from a study area in Germany. We analyzed the detected CPs along with the neighboring PS time series within a 15-meter radius. The results indicated that the deep learning models outperformed the Bayesian approach in terms of precision, recall, and F1-score with simulated PS time series, highlighting their potential for precise CP detection. Furthermore, the models demonstrated their effectiveness when applied to the real PS time series.</p></div>","PeriodicalId":46286,"journal":{"name":"Applied Geomatics","volume":"17 2","pages":"357 - 366"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12518-025-00621-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Detecting change points in time series of inSAR persistent scatterers using deep learning models\",\"authors\":\"Kourosh Shahryarinia, Mohammad Omidalizarandi, Mohammadreza Heidarianbaei, Mohammad Ali Sharifi, Ingo Neumann\",\"doi\":\"10.1007/s12518-025-00621-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Accurately detecting significant changes in the Earth’s surface is essential for timely intervention. As a key techniques in Interferometric Synthetic Aperture Radar (InSAR), Persistent Scatterer Interferometry (PSI) generates time series data of Persistent Scatterers (PS), which are stable points on the Earth’s surface that enable precise displacement measurements over time. While many studies have focused on statistical methods for identifying anomalies in PS time series, few have explored the potential of deep learning for change point (CP) detection. A major challenge with supervised deep learning is the need for large labeled datasets. To overcome this, we implemented a simulation algorithm to generate an extensive set of PS points with corresponding target CPs, reflecting the statistical characteristics of PS time series. To identify changes in slope and intercept, We used two deep learning models: Bidirectional Long Short-Term Memory (BiLSTM), designed for time series data, and U-Net, developed for image data. A spectral analysis technique is applied to remove seasonal components from the time series data before feeding into the networks. The models were evaluated using metrics such as F1-score, precision, and recall, and were compared to a Bayesian-based approach. Additionally, the methodology was applied to real PS time series from a study area in Germany. We analyzed the detected CPs along with the neighboring PS time series within a 15-meter radius. The results indicated that the deep learning models outperformed the Bayesian approach in terms of precision, recall, and F1-score with simulated PS time series, highlighting their potential for precise CP detection. Furthermore, the models demonstrated their effectiveness when applied to the real PS time series.</p></div>\",\"PeriodicalId\":46286,\"journal\":{\"name\":\"Applied Geomatics\",\"volume\":\"17 2\",\"pages\":\"357 - 366\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s12518-025-00621-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Geomatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12518-025-00621-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Geomatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s12518-025-00621-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"REMOTE SENSING","Score":null,"Total":0}
Detecting change points in time series of inSAR persistent scatterers using deep learning models
Accurately detecting significant changes in the Earth’s surface is essential for timely intervention. As a key techniques in Interferometric Synthetic Aperture Radar (InSAR), Persistent Scatterer Interferometry (PSI) generates time series data of Persistent Scatterers (PS), which are stable points on the Earth’s surface that enable precise displacement measurements over time. While many studies have focused on statistical methods for identifying anomalies in PS time series, few have explored the potential of deep learning for change point (CP) detection. A major challenge with supervised deep learning is the need for large labeled datasets. To overcome this, we implemented a simulation algorithm to generate an extensive set of PS points with corresponding target CPs, reflecting the statistical characteristics of PS time series. To identify changes in slope and intercept, We used two deep learning models: Bidirectional Long Short-Term Memory (BiLSTM), designed for time series data, and U-Net, developed for image data. A spectral analysis technique is applied to remove seasonal components from the time series data before feeding into the networks. The models were evaluated using metrics such as F1-score, precision, and recall, and were compared to a Bayesian-based approach. Additionally, the methodology was applied to real PS time series from a study area in Germany. We analyzed the detected CPs along with the neighboring PS time series within a 15-meter radius. The results indicated that the deep learning models outperformed the Bayesian approach in terms of precision, recall, and F1-score with simulated PS time series, highlighting their potential for precise CP detection. Furthermore, the models demonstrated their effectiveness when applied to the real PS time series.
期刊介绍:
Applied Geomatics (AGMJ) is the official journal of SIFET the Italian Society of Photogrammetry and Topography and covers all aspects and information on scientific and technical advances in the geomatics sciences. The Journal publishes innovative contributions in geomatics applications ranging from the integration of instruments, methodologies and technologies and their use in the environmental sciences, engineering and other natural sciences.
The areas of interest include many research fields such as: remote sensing, close range and videometric photogrammetry, image analysis, digital mapping, land and geographic information systems, geographic information science, integrated geodesy, spatial data analysis, heritage recording; network adjustment and numerical processes. Furthermore, Applied Geomatics is open to articles from all areas of deformation measurements and analysis, structural engineering, mechanical engineering and all trends in earth and planetary survey science and space technology. The Journal also contains notices of conferences and international workshops, industry news, and information on new products. It provides a useful forum for professional and academic scientists involved in geomatics science and technology.
Information on Open Research Funding and Support may be found here: https://www.springernature.com/gp/open-research/institutional-agreements