土壤渗滤液中溶解有机质的分子组成及其对地下水的影响

IF 3.7 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Jie Dong, Linna Jia, Haoran Wu, Hang Fu, Wenlin Ren, Kang Yue, Jia Xin
{"title":"土壤渗滤液中溶解有机质的分子组成及其对地下水的影响","authors":"Jie Dong,&nbsp;Linna Jia,&nbsp;Haoran Wu,&nbsp;Hang Fu,&nbsp;Wenlin Ren,&nbsp;Kang Yue,&nbsp;Jia Xin","doi":"10.1007/s10533-025-01249-0","DOIUrl":null,"url":null,"abstract":"<div><p>The application of surface agricultural practices (SAPs) to agricultural soils is gaining attention as a potential valuable method for sequestering carbon and improving soil fertility. However, the impacts of SAPs on the molecular properties of dissolved organic matter (DOM) in soil leachates are poorly understood. In this study, the molecular characteristics of DOM successively leached from agricultural soils applied with control, manure fertilization, lucerne planting, and straw return were unraveled by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). The results indicated that the greater proportion of low molecular weight labile DOM (lipids-like, proteins-like and carbohydrates-like) in initial soil leachates gradually changed to higher fractions of larger recalcitrant DOM (condensed aromatics-like and tannins-like) in later soil leachates. Compared to the control, the soil leachates treated with SAPs had greater percentage of labile DOM and lower percentage of recalcitrant DOM, along with higher abundance of CHNO and CHOS compounds. Furthermore, DOM in the manure, lucerne, and straw treatments showed smaller mass weights, higher H/C ratios and fewer double bonds, rings, and aromatic structures. DOM with different physicochemical properties play different roles in the processes of nitrogen cycling and arsenic migration. The implementation of SAPs may alleviate groundwater nitrogen pollution, but it may also enhance the potential risk of arsenic mobility in groundwater. This study deepens our understanding of the molecular characterization of DOM leached from agricultural soils applied with different SAPs, which holds significant implications for evaluating the environmental impacts of soil DOM leaching.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"168 4","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-025-01249-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Molecular composition of dissolved organic matter in soil leachate following application of surface agricultural practices and its implications for groundwater\",\"authors\":\"Jie Dong,&nbsp;Linna Jia,&nbsp;Haoran Wu,&nbsp;Hang Fu,&nbsp;Wenlin Ren,&nbsp;Kang Yue,&nbsp;Jia Xin\",\"doi\":\"10.1007/s10533-025-01249-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The application of surface agricultural practices (SAPs) to agricultural soils is gaining attention as a potential valuable method for sequestering carbon and improving soil fertility. However, the impacts of SAPs on the molecular properties of dissolved organic matter (DOM) in soil leachates are poorly understood. In this study, the molecular characteristics of DOM successively leached from agricultural soils applied with control, manure fertilization, lucerne planting, and straw return were unraveled by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). The results indicated that the greater proportion of low molecular weight labile DOM (lipids-like, proteins-like and carbohydrates-like) in initial soil leachates gradually changed to higher fractions of larger recalcitrant DOM (condensed aromatics-like and tannins-like) in later soil leachates. Compared to the control, the soil leachates treated with SAPs had greater percentage of labile DOM and lower percentage of recalcitrant DOM, along with higher abundance of CHNO and CHOS compounds. Furthermore, DOM in the manure, lucerne, and straw treatments showed smaller mass weights, higher H/C ratios and fewer double bonds, rings, and aromatic structures. DOM with different physicochemical properties play different roles in the processes of nitrogen cycling and arsenic migration. The implementation of SAPs may alleviate groundwater nitrogen pollution, but it may also enhance the potential risk of arsenic mobility in groundwater. This study deepens our understanding of the molecular characterization of DOM leached from agricultural soils applied with different SAPs, which holds significant implications for evaluating the environmental impacts of soil DOM leaching.</p></div>\",\"PeriodicalId\":8901,\"journal\":{\"name\":\"Biogeochemistry\",\"volume\":\"168 4\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10533-025-01249-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biogeochemistry\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10533-025-01249-0\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogeochemistry","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10533-025-01249-0","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

作为一种潜在的有价值的固碳和提高土壤肥力的方法,地表农业实践(SAPs)在农业土壤中的应用日益受到关注。然而,sap对土壤渗滤液中溶解有机质(DOM)分子性质的影响尚不清楚。本研究采用傅里叶变换离子回旋共振质谱(FT-ICR MS)分析了在对照、施肥、种植苜蓿和秸秆还田的农业土壤中依次浸出的DOM的分子特征。结果表明,初始土壤渗滤液中较大比例的低分子量不稳定DOM(类脂、类蛋白和类碳水化合物)逐渐转变为后期土壤渗滤液中较高比例的较大顽固性DOM(浓缩芳香类和单宁类)。与对照相比,经SAPs处理的土壤渗滤液中挥发性DOM比例较高,顽固性DOM比例较低,CHNO和CHOS化合物丰度较高。此外,有机肥、苜蓿和秸秆处理的DOM表现出更小的质量质量、更高的H/C比和更少的双键、环和芳香结构。不同理化性质的DOM在氮循环和砷迁移过程中发挥着不同的作用。实施SAPs可以缓解地下水氮污染,但也可能增加地下水中砷迁移的潜在风险。本研究加深了我们对不同sap对农业土壤DOM浸出的分子特性的认识,对评价土壤DOM浸出的环境影响具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Molecular composition of dissolved organic matter in soil leachate following application of surface agricultural practices and its implications for groundwater

The application of surface agricultural practices (SAPs) to agricultural soils is gaining attention as a potential valuable method for sequestering carbon and improving soil fertility. However, the impacts of SAPs on the molecular properties of dissolved organic matter (DOM) in soil leachates are poorly understood. In this study, the molecular characteristics of DOM successively leached from agricultural soils applied with control, manure fertilization, lucerne planting, and straw return were unraveled by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). The results indicated that the greater proportion of low molecular weight labile DOM (lipids-like, proteins-like and carbohydrates-like) in initial soil leachates gradually changed to higher fractions of larger recalcitrant DOM (condensed aromatics-like and tannins-like) in later soil leachates. Compared to the control, the soil leachates treated with SAPs had greater percentage of labile DOM and lower percentage of recalcitrant DOM, along with higher abundance of CHNO and CHOS compounds. Furthermore, DOM in the manure, lucerne, and straw treatments showed smaller mass weights, higher H/C ratios and fewer double bonds, rings, and aromatic structures. DOM with different physicochemical properties play different roles in the processes of nitrogen cycling and arsenic migration. The implementation of SAPs may alleviate groundwater nitrogen pollution, but it may also enhance the potential risk of arsenic mobility in groundwater. This study deepens our understanding of the molecular characterization of DOM leached from agricultural soils applied with different SAPs, which holds significant implications for evaluating the environmental impacts of soil DOM leaching.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biogeochemistry
Biogeochemistry 环境科学-地球科学综合
CiteScore
7.10
自引率
5.00%
发文量
112
审稿时长
3.2 months
期刊介绍: Biogeochemistry publishes original and synthetic papers dealing with biotic controls on the chemistry of the environment, or with the geochemical control of the structure and function of ecosystems. Cycles are considered, either of individual elements or of specific classes of natural or anthropogenic compounds in ecosystems. Particular emphasis is given to coupled interactions of element cycles. The journal spans from the molecular to global scales to elucidate the mechanisms driving patterns in biogeochemical cycles through space and time. Studies on both natural and artificial ecosystems are published when they contribute to a general understanding of biogeochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信