积分-微分包含的离散逼近和最优性条件

IF 1.7 2区 数学 Q2 MATHEMATICS, APPLIED
Abderrahim Bouach, Tahar Haddad, Boris S. Mordukhovich
{"title":"积分-微分包含的离散逼近和最优性条件","authors":"Abderrahim Bouach,&nbsp;Tahar Haddad,&nbsp;Boris S. Mordukhovich","doi":"10.1007/s00245-025-10272-4","DOIUrl":null,"url":null,"abstract":"<div><p>This paper addresses a new class of generalized Bolza problems governed by nonconvex integro-differential inclusions with endpoint constraints on trajectories, where the integral terms are given in the general (with time-dependent integrands in the dynamics) Volterra form. We pursue here a threefold goal. First we construct well-posed approximations of continuous-time integro-differential systems by their discrete-time counterparts with showing that any feasible solution to the original system can be strongly approximated in the <span>\\(W^{1,2}\\)</span>-norm topology by piecewise-linear extensions of feasible discrete trajectories. This allows us to verify in turn the strong convergence of discrete optimal solutions to a prescribed local minimizer for the original problem. Facing intrinsic nonsmoothness of original integro-differential problem and its discrete approximations, we employ appropriate tools of generalized differentiation in variational analysis to derive necessary optimality conditions for discrete-time problems (which is our second goal) and finally accomplish our third goal to obtain necessary conditions for the original continuous-time problems by passing to the limit from discrete approximations. In this way we establish, in particular, a novel necessary optimality condition of the Volterra type, which is the crucial result for dynamic optimization of integro-differential inclusions.</p></div>","PeriodicalId":55566,"journal":{"name":"Applied Mathematics and Optimization","volume":"92 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discrete Approximations and Optimality Conditions for Integro-Differential Inclusions\",\"authors\":\"Abderrahim Bouach,&nbsp;Tahar Haddad,&nbsp;Boris S. Mordukhovich\",\"doi\":\"10.1007/s00245-025-10272-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper addresses a new class of generalized Bolza problems governed by nonconvex integro-differential inclusions with endpoint constraints on trajectories, where the integral terms are given in the general (with time-dependent integrands in the dynamics) Volterra form. We pursue here a threefold goal. First we construct well-posed approximations of continuous-time integro-differential systems by their discrete-time counterparts with showing that any feasible solution to the original system can be strongly approximated in the <span>\\\\(W^{1,2}\\\\)</span>-norm topology by piecewise-linear extensions of feasible discrete trajectories. This allows us to verify in turn the strong convergence of discrete optimal solutions to a prescribed local minimizer for the original problem. Facing intrinsic nonsmoothness of original integro-differential problem and its discrete approximations, we employ appropriate tools of generalized differentiation in variational analysis to derive necessary optimality conditions for discrete-time problems (which is our second goal) and finally accomplish our third goal to obtain necessary conditions for the original continuous-time problems by passing to the limit from discrete approximations. In this way we establish, in particular, a novel necessary optimality condition of the Volterra type, which is the crucial result for dynamic optimization of integro-differential inclusions.</p></div>\",\"PeriodicalId\":55566,\"journal\":{\"name\":\"Applied Mathematics and Optimization\",\"volume\":\"92 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00245-025-10272-4\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Optimization","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00245-025-10272-4","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一类新的广义Bolza问题,该问题由轨迹上具有端点约束的非凸积分-微分包含控制,其中积分项以一般(在动力学中具有时变积分)Volterra形式给出。我们在这里追求一个三重目标。首先,我们构造连续时间积分-微分系统的离散对应物的适定逼近,并表明原始系统的任何可行解都可以通过可行离散轨迹的分段线性扩展在\(W^{1,2}\) -范数拓扑中强逼近。这允许我们反过来验证离散最优解对原始问题的规定局部最小值的强收敛性。面对原始积分-微分问题及其离散逼近的固有非光滑性,我们利用变分分析中适当的广义微分工具,导出了离散时间问题的必要最优性条件(这是我们的第二个目标),并最终实现了我们的第三个目标,即通过离散逼近的极限来获得原始连续时间问题的必要条件。通过这种方法,我们特别建立了一个新的Volterra型必要最优性条件,这是积分-微分包体动态优化的关键结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discrete Approximations and Optimality Conditions for Integro-Differential Inclusions

This paper addresses a new class of generalized Bolza problems governed by nonconvex integro-differential inclusions with endpoint constraints on trajectories, where the integral terms are given in the general (with time-dependent integrands in the dynamics) Volterra form. We pursue here a threefold goal. First we construct well-posed approximations of continuous-time integro-differential systems by their discrete-time counterparts with showing that any feasible solution to the original system can be strongly approximated in the \(W^{1,2}\)-norm topology by piecewise-linear extensions of feasible discrete trajectories. This allows us to verify in turn the strong convergence of discrete optimal solutions to a prescribed local minimizer for the original problem. Facing intrinsic nonsmoothness of original integro-differential problem and its discrete approximations, we employ appropriate tools of generalized differentiation in variational analysis to derive necessary optimality conditions for discrete-time problems (which is our second goal) and finally accomplish our third goal to obtain necessary conditions for the original continuous-time problems by passing to the limit from discrete approximations. In this way we establish, in particular, a novel necessary optimality condition of the Volterra type, which is the crucial result for dynamic optimization of integro-differential inclusions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
5.60%
发文量
103
审稿时长
>12 weeks
期刊介绍: The Applied Mathematics and Optimization Journal covers a broad range of mathematical methods in particular those that bridge with optimization and have some connection with applications. Core topics include calculus of variations, partial differential equations, stochastic control, optimization of deterministic or stochastic systems in discrete or continuous time, homogenization, control theory, mean field games, dynamic games and optimal transport. Algorithmic, data analytic, machine learning and numerical methods which support the modeling and analysis of optimization problems are encouraged. Of great interest are papers which show some novel idea in either the theory or model which include some connection with potential applications in science and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信