Abderrahim Bouach, Tahar Haddad, Boris S. Mordukhovich
{"title":"积分-微分包含的离散逼近和最优性条件","authors":"Abderrahim Bouach, Tahar Haddad, Boris S. Mordukhovich","doi":"10.1007/s00245-025-10272-4","DOIUrl":null,"url":null,"abstract":"<div><p>This paper addresses a new class of generalized Bolza problems governed by nonconvex integro-differential inclusions with endpoint constraints on trajectories, where the integral terms are given in the general (with time-dependent integrands in the dynamics) Volterra form. We pursue here a threefold goal. First we construct well-posed approximations of continuous-time integro-differential systems by their discrete-time counterparts with showing that any feasible solution to the original system can be strongly approximated in the <span>\\(W^{1,2}\\)</span>-norm topology by piecewise-linear extensions of feasible discrete trajectories. This allows us to verify in turn the strong convergence of discrete optimal solutions to a prescribed local minimizer for the original problem. Facing intrinsic nonsmoothness of original integro-differential problem and its discrete approximations, we employ appropriate tools of generalized differentiation in variational analysis to derive necessary optimality conditions for discrete-time problems (which is our second goal) and finally accomplish our third goal to obtain necessary conditions for the original continuous-time problems by passing to the limit from discrete approximations. In this way we establish, in particular, a novel necessary optimality condition of the Volterra type, which is the crucial result for dynamic optimization of integro-differential inclusions.</p></div>","PeriodicalId":55566,"journal":{"name":"Applied Mathematics and Optimization","volume":"92 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discrete Approximations and Optimality Conditions for Integro-Differential Inclusions\",\"authors\":\"Abderrahim Bouach, Tahar Haddad, Boris S. Mordukhovich\",\"doi\":\"10.1007/s00245-025-10272-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper addresses a new class of generalized Bolza problems governed by nonconvex integro-differential inclusions with endpoint constraints on trajectories, where the integral terms are given in the general (with time-dependent integrands in the dynamics) Volterra form. We pursue here a threefold goal. First we construct well-posed approximations of continuous-time integro-differential systems by their discrete-time counterparts with showing that any feasible solution to the original system can be strongly approximated in the <span>\\\\(W^{1,2}\\\\)</span>-norm topology by piecewise-linear extensions of feasible discrete trajectories. This allows us to verify in turn the strong convergence of discrete optimal solutions to a prescribed local minimizer for the original problem. Facing intrinsic nonsmoothness of original integro-differential problem and its discrete approximations, we employ appropriate tools of generalized differentiation in variational analysis to derive necessary optimality conditions for discrete-time problems (which is our second goal) and finally accomplish our third goal to obtain necessary conditions for the original continuous-time problems by passing to the limit from discrete approximations. In this way we establish, in particular, a novel necessary optimality condition of the Volterra type, which is the crucial result for dynamic optimization of integro-differential inclusions.</p></div>\",\"PeriodicalId\":55566,\"journal\":{\"name\":\"Applied Mathematics and Optimization\",\"volume\":\"92 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00245-025-10272-4\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Optimization","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00245-025-10272-4","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Discrete Approximations and Optimality Conditions for Integro-Differential Inclusions
This paper addresses a new class of generalized Bolza problems governed by nonconvex integro-differential inclusions with endpoint constraints on trajectories, where the integral terms are given in the general (with time-dependent integrands in the dynamics) Volterra form. We pursue here a threefold goal. First we construct well-posed approximations of continuous-time integro-differential systems by their discrete-time counterparts with showing that any feasible solution to the original system can be strongly approximated in the \(W^{1,2}\)-norm topology by piecewise-linear extensions of feasible discrete trajectories. This allows us to verify in turn the strong convergence of discrete optimal solutions to a prescribed local minimizer for the original problem. Facing intrinsic nonsmoothness of original integro-differential problem and its discrete approximations, we employ appropriate tools of generalized differentiation in variational analysis to derive necessary optimality conditions for discrete-time problems (which is our second goal) and finally accomplish our third goal to obtain necessary conditions for the original continuous-time problems by passing to the limit from discrete approximations. In this way we establish, in particular, a novel necessary optimality condition of the Volterra type, which is the crucial result for dynamic optimization of integro-differential inclusions.
期刊介绍:
The Applied Mathematics and Optimization Journal covers a broad range of mathematical methods in particular those that bridge with optimization and have some connection with applications. Core topics include calculus of variations, partial differential equations, stochastic control, optimization of deterministic or stochastic systems in discrete or continuous time, homogenization, control theory, mean field games, dynamic games and optimal transport. Algorithmic, data analytic, machine learning and numerical methods which support the modeling and analysis of optimization problems are encouraged. Of great interest are papers which show some novel idea in either the theory or model which include some connection with potential applications in science and engineering.