涉及简并Kirchhoff项的分数阶Schrödinger-Poisson系统的两个解

IF 1.6 3区 数学 Q1 MATHEMATICS
Conghui Shi, Lifeng Guo, Binlin Zhang
{"title":"涉及简并Kirchhoff项的分数阶Schrödinger-Poisson系统的两个解","authors":"Conghui Shi,&nbsp;Lifeng Guo,&nbsp;Binlin Zhang","doi":"10.1007/s13324-025-01094-2","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we investigate the multiplicity of solutions for the following nonlinear fractional Schrödinger-Poisson system of Kirchhoff type: </p><div><div><span>$$\\begin{aligned} \\left\\{ \\begin{array}{ll} [u]_{s}^{2(\\theta -1)}(-\\Delta )^{s}u+ \\phi (x)u = f(x)|u|^{r-2}u + \\lambda \\frac{|u|^{q - 2} u}{|x|^{\\alpha }}, &amp; \\text {in} \\,\\,\\Omega , \\\\ (-\\Delta )^{t} \\phi = u^2, &amp; \\text {in} \\,\\,\\Omega ,\\\\ u=\\phi =0, &amp; \\text {in} ~\\mathbb {R}^{N} \\backslash \\Omega , \\end{array} \\right. \\end{aligned}$$</span></div></div><p>where <span>\\(s, t\\in (0,1)\\)</span>, <span>\\(\\Omega \\subset \\mathbb {R}^N\\)</span> is a smooth bounded domain containing 0 with Lipschitz boundary, <span>\\(\\left( -\\Delta \\right) ^{\\gamma }\\)</span> <span>\\((\\gamma =s,t)\\)</span> is the fractional Laplace operator, <span>\\(\\lambda \\)</span> is a positive parameter, <span>\\(0\\le \\alpha&lt;2s&lt;N\\)</span>, <span>\\(2&lt;r&lt;2\\theta&lt;4&lt;q&lt;2_{\\alpha }^{*}\\)</span> and <span>\\(f(x)\\in L^{\\frac{2_\\alpha ^*}{2_\\alpha ^*-r}}(\\Omega )\\)</span> is positive almost everywhere in <span>\\({\\Omega }\\)</span>. By using variational methods, we get over some tricky difficulties stemming from degenerate feature of Kirchhoff term. As a result, by employing the Nehari manifold method, under some certain conditions, we prove that the above system has at least two distinct positive solutions for <span>\\(\\lambda \\)</span> small.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"15 4","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two solutions for fractional Schrödinger-Poisson system involving a degenerate Kirchhoff term\",\"authors\":\"Conghui Shi,&nbsp;Lifeng Guo,&nbsp;Binlin Zhang\",\"doi\":\"10.1007/s13324-025-01094-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we investigate the multiplicity of solutions for the following nonlinear fractional Schrödinger-Poisson system of Kirchhoff type: </p><div><div><span>$$\\\\begin{aligned} \\\\left\\\\{ \\\\begin{array}{ll} [u]_{s}^{2(\\\\theta -1)}(-\\\\Delta )^{s}u+ \\\\phi (x)u = f(x)|u|^{r-2}u + \\\\lambda \\\\frac{|u|^{q - 2} u}{|x|^{\\\\alpha }}, &amp; \\\\text {in} \\\\,\\\\,\\\\Omega , \\\\\\\\ (-\\\\Delta )^{t} \\\\phi = u^2, &amp; \\\\text {in} \\\\,\\\\,\\\\Omega ,\\\\\\\\ u=\\\\phi =0, &amp; \\\\text {in} ~\\\\mathbb {R}^{N} \\\\backslash \\\\Omega , \\\\end{array} \\\\right. \\\\end{aligned}$$</span></div></div><p>where <span>\\\\(s, t\\\\in (0,1)\\\\)</span>, <span>\\\\(\\\\Omega \\\\subset \\\\mathbb {R}^N\\\\)</span> is a smooth bounded domain containing 0 with Lipschitz boundary, <span>\\\\(\\\\left( -\\\\Delta \\\\right) ^{\\\\gamma }\\\\)</span> <span>\\\\((\\\\gamma =s,t)\\\\)</span> is the fractional Laplace operator, <span>\\\\(\\\\lambda \\\\)</span> is a positive parameter, <span>\\\\(0\\\\le \\\\alpha&lt;2s&lt;N\\\\)</span>, <span>\\\\(2&lt;r&lt;2\\\\theta&lt;4&lt;q&lt;2_{\\\\alpha }^{*}\\\\)</span> and <span>\\\\(f(x)\\\\in L^{\\\\frac{2_\\\\alpha ^*}{2_\\\\alpha ^*-r}}(\\\\Omega )\\\\)</span> is positive almost everywhere in <span>\\\\({\\\\Omega }\\\\)</span>. By using variational methods, we get over some tricky difficulties stemming from degenerate feature of Kirchhoff term. As a result, by employing the Nehari manifold method, under some certain conditions, we prove that the above system has at least two distinct positive solutions for <span>\\\\(\\\\lambda \\\\)</span> small.</p></div>\",\"PeriodicalId\":48860,\"journal\":{\"name\":\"Analysis and Mathematical Physics\",\"volume\":\"15 4\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Mathematical Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13324-025-01094-2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-025-01094-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了以下Kirchhoff型非线性分数阶Schrödinger-Poisson系统解的多重性:$$\begin{aligned} \left\{ \begin{array}{ll} [u]_{s}^{2(\theta -1)}(-\Delta )^{s}u+ \phi (x)u = f(x)|u|^{r-2}u + \lambda \frac{|u|^{q - 2} u}{|x|^{\alpha }}, & \text {in} \,\,\Omega , \\ (-\Delta )^{t} \phi = u^2, & \text {in} \,\,\Omega ,\\ u=\phi =0, & \text {in} ~\mathbb {R}^{N} \backslash \Omega , \end{array} \right. \end{aligned}$$,其中\(s, t\in (0,1)\)、\(\Omega \subset \mathbb {R}^N\)是含0的光滑有界Lipschitz边界,\(\left( -\Delta \right) ^{\gamma }\)、\((\gamma =s,t)\)是分数阶拉普拉斯算子,\(\lambda \)是一个正参数,\(0\le \alpha<2s<N\)、\(2<r<2\theta<4<q<2_{\alpha }^{*}\)和\(f(x)\in L^{\frac{2_\alpha ^*}{2_\alpha ^*-r}}(\Omega )\)在\({\Omega }\)中几乎处处为正。利用变分方法,克服了基尔霍夫项的简并性所引起的一些棘手问题。因此,利用Nehari流形方法,在一定条件下,我们证明了上述系统对于\(\lambda \)小至少有两个不同的正解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two solutions for fractional Schrödinger-Poisson system involving a degenerate Kirchhoff term

In this paper, we investigate the multiplicity of solutions for the following nonlinear fractional Schrödinger-Poisson system of Kirchhoff type:

$$\begin{aligned} \left\{ \begin{array}{ll} [u]_{s}^{2(\theta -1)}(-\Delta )^{s}u+ \phi (x)u = f(x)|u|^{r-2}u + \lambda \frac{|u|^{q - 2} u}{|x|^{\alpha }}, & \text {in} \,\,\Omega , \\ (-\Delta )^{t} \phi = u^2, & \text {in} \,\,\Omega ,\\ u=\phi =0, & \text {in} ~\mathbb {R}^{N} \backslash \Omega , \end{array} \right. \end{aligned}$$

where \(s, t\in (0,1)\), \(\Omega \subset \mathbb {R}^N\) is a smooth bounded domain containing 0 with Lipschitz boundary, \(\left( -\Delta \right) ^{\gamma }\) \((\gamma =s,t)\) is the fractional Laplace operator, \(\lambda \) is a positive parameter, \(0\le \alpha<2s<N\), \(2<r<2\theta<4<q<2_{\alpha }^{*}\) and \(f(x)\in L^{\frac{2_\alpha ^*}{2_\alpha ^*-r}}(\Omega )\) is positive almost everywhere in \({\Omega }\). By using variational methods, we get over some tricky difficulties stemming from degenerate feature of Kirchhoff term. As a result, by employing the Nehari manifold method, under some certain conditions, we prove that the above system has at least two distinct positive solutions for \(\lambda \) small.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信