一自由度系统周期运动耗散稳定的可能性

IF 0.7 Q4 MECHANICS
V. A. Zubenko, E. I. Kugushev, T. V. Shakhova
{"title":"一自由度系统周期运动耗散稳定的可能性","authors":"V. A. Zubenko,&nbsp;E. I. Kugushev,&nbsp;T. V. Shakhova","doi":"10.3103/S0027133025700153","DOIUrl":null,"url":null,"abstract":"<p>A conservative system with one degree of freedom admitting a periodic motion is considered. The system is located on a translationally moving base. Linear viscous friction forces are added to the forces acting on the points of the system. We determine the law of motion of the base that allows preserving the periodic motion of the initial system relative to this base. The conditions when the periodic motion becomes Lyapunov asymptotically stable are obtained by using the Vazhevsky inequality.</p>","PeriodicalId":710,"journal":{"name":"Moscow University Mechanics Bulletin","volume":"80 2","pages":"89 - 93"},"PeriodicalIF":0.7000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Possibility of Dissipative Stabilization of a Periodic Motion of a System with One Degree of Freedom\",\"authors\":\"V. A. Zubenko,&nbsp;E. I. Kugushev,&nbsp;T. V. Shakhova\",\"doi\":\"10.3103/S0027133025700153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A conservative system with one degree of freedom admitting a periodic motion is considered. The system is located on a translationally moving base. Linear viscous friction forces are added to the forces acting on the points of the system. We determine the law of motion of the base that allows preserving the periodic motion of the initial system relative to this base. The conditions when the periodic motion becomes Lyapunov asymptotically stable are obtained by using the Vazhevsky inequality.</p>\",\"PeriodicalId\":710,\"journal\":{\"name\":\"Moscow University Mechanics Bulletin\",\"volume\":\"80 2\",\"pages\":\"89 - 93\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moscow University Mechanics Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S0027133025700153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow University Mechanics Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S0027133025700153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

考虑一个允许周期运动的单自由度保守系统。该系统位于平移移动的基座上。线性粘性摩擦力加到作用在系统各点上的力上。我们确定了基底的运动规律,使初始系统相对于基底的周期运动保持不变。利用Vazhevsky不等式,得到了周期运动Lyapunov渐近稳定的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Possibility of Dissipative Stabilization of a Periodic Motion of a System with One Degree of Freedom

A conservative system with one degree of freedom admitting a periodic motion is considered. The system is located on a translationally moving base. Linear viscous friction forces are added to the forces acting on the points of the system. We determine the law of motion of the base that allows preserving the periodic motion of the initial system relative to this base. The conditions when the periodic motion becomes Lyapunov asymptotically stable are obtained by using the Vazhevsky inequality.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
9
期刊介绍: Moscow University Mechanics Bulletin  is the journal of scientific publications, reflecting the most important areas of mechanics at Lomonosov Moscow State University. The journal is dedicated to research in theoretical mechanics, applied mechanics and motion control, hydrodynamics, aeromechanics, gas and wave dynamics, theory of elasticity, theory of elasticity and mechanics of composites.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信