{"title":"CDK4/6降解蛋白水解靶向嵌合体(PROTACs)的设计、合成和分析","authors":"Rajeev Goswami, Nimesh Bhaskaran, Anil Deshpande, Neha KS, Anand Kumar Raichurkar, Anirudh Manoj, Anil Srivastava, Amit Singh, Srividya Swaminathan, Jeyaraj Duraiswamy Athisayamani, Saravanakumar Dhakshinamoorthy","doi":"10.1007/s00044-025-03437-x","DOIUrl":null,"url":null,"abstract":"<div><p>We report the design and synthesis of PROTACs based on (3 R,4 R)-4-((5-chloro-4-(4-fluoro-2-(2-hydroxypropan-2-yl)-1-isopropyl-1H-benzo[d]imidazol-6-yl)pyrimidin-2-yl)amino)piperidin-3-ol, using diverse linkers and pomalidomide as a CRBN ligand. Molecular modeling experiments were conducted to arrive at the optimal exit vectors on both the warhead and pomalidomide to enable efficient linker attachment. Most of the PROTACs exhibited good binding affinity (IC<sub>50</sub> between 0.04 µM to 1.50 µM) with CDK4/6 and the binary complex formation data correlated with the ternary complex formation. Selected PROTACs (compounds <b>4</b>, <b>7</b>, and <b>13</b>) were tested in Jurkat cells at varying concentrations to assess CDK4/6 protein degradation. Compound <b>7</b> showed a DC<sub>50</sub> of 2.0 and 4.0 nM against CDK4 and CDK6 respectively, whereas compound <b>13</b> showed a DC<sub>50</sub> of 6.0 nM against both CDK4 and CDK6. These results highlight PROTACs <b>7</b> and <b>13</b> as promising leads for further therapeutic development.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":699,"journal":{"name":"Medicinal Chemistry Research","volume":"34 8","pages":"1688 - 1694"},"PeriodicalIF":3.1000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design, synthesis and profiling of proteolysis-targeting chimeras (PROTACs) as CDK4/6 degraders\",\"authors\":\"Rajeev Goswami, Nimesh Bhaskaran, Anil Deshpande, Neha KS, Anand Kumar Raichurkar, Anirudh Manoj, Anil Srivastava, Amit Singh, Srividya Swaminathan, Jeyaraj Duraiswamy Athisayamani, Saravanakumar Dhakshinamoorthy\",\"doi\":\"10.1007/s00044-025-03437-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We report the design and synthesis of PROTACs based on (3 R,4 R)-4-((5-chloro-4-(4-fluoro-2-(2-hydroxypropan-2-yl)-1-isopropyl-1H-benzo[d]imidazol-6-yl)pyrimidin-2-yl)amino)piperidin-3-ol, using diverse linkers and pomalidomide as a CRBN ligand. Molecular modeling experiments were conducted to arrive at the optimal exit vectors on both the warhead and pomalidomide to enable efficient linker attachment. Most of the PROTACs exhibited good binding affinity (IC<sub>50</sub> between 0.04 µM to 1.50 µM) with CDK4/6 and the binary complex formation data correlated with the ternary complex formation. Selected PROTACs (compounds <b>4</b>, <b>7</b>, and <b>13</b>) were tested in Jurkat cells at varying concentrations to assess CDK4/6 protein degradation. Compound <b>7</b> showed a DC<sub>50</sub> of 2.0 and 4.0 nM against CDK4 and CDK6 respectively, whereas compound <b>13</b> showed a DC<sub>50</sub> of 6.0 nM against both CDK4 and CDK6. These results highlight PROTACs <b>7</b> and <b>13</b> as promising leads for further therapeutic development.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":699,\"journal\":{\"name\":\"Medicinal Chemistry Research\",\"volume\":\"34 8\",\"pages\":\"1688 - 1694\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medicinal Chemistry Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00044-025-03437-x\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicinal Chemistry Research","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s00044-025-03437-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Design, synthesis and profiling of proteolysis-targeting chimeras (PROTACs) as CDK4/6 degraders
We report the design and synthesis of PROTACs based on (3 R,4 R)-4-((5-chloro-4-(4-fluoro-2-(2-hydroxypropan-2-yl)-1-isopropyl-1H-benzo[d]imidazol-6-yl)pyrimidin-2-yl)amino)piperidin-3-ol, using diverse linkers and pomalidomide as a CRBN ligand. Molecular modeling experiments were conducted to arrive at the optimal exit vectors on both the warhead and pomalidomide to enable efficient linker attachment. Most of the PROTACs exhibited good binding affinity (IC50 between 0.04 µM to 1.50 µM) with CDK4/6 and the binary complex formation data correlated with the ternary complex formation. Selected PROTACs (compounds 4, 7, and 13) were tested in Jurkat cells at varying concentrations to assess CDK4/6 protein degradation. Compound 7 showed a DC50 of 2.0 and 4.0 nM against CDK4 and CDK6 respectively, whereas compound 13 showed a DC50 of 6.0 nM against both CDK4 and CDK6. These results highlight PROTACs 7 and 13 as promising leads for further therapeutic development.
期刊介绍:
Medicinal Chemistry Research (MCRE) publishes papers on a wide range of topics, favoring research with significant, new, and up-to-date information. Although the journal has a demanding peer review process, MCRE still boasts rapid publication, due in part, to the length of the submissions. The journal publishes significant research on various topics, many of which emphasize the structure-activity relationships of molecular biology.