双星系统中相对论性气体宏观流场和磁场的突变形成

IF 1.8 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS
E. Saralidze, N. L. Shatashvili, S. M. Mahajan, E. Dadiani
{"title":"双星系统中相对论性气体宏观流场和磁场的突变形成","authors":"E. Saralidze,&nbsp;N. L. Shatashvili,&nbsp;S. M. Mahajan,&nbsp;E. Dadiani","doi":"10.1007/s10509-025-04456-1","DOIUrl":null,"url":null,"abstract":"<div><p>It is shown that a simple quasi–equilibrium analysis of a multi-component plasma can be harnessed to explain catastrophic energy transformations in astrophysical objects. We limit ourselves to the particular class of binary systems for which the typical plasma consists of one classical ion component, and two relativistic electron components – the bulk degenerate electron gas with a small contamination of hot electrons. We derive, analytically, the conditions conducive to such a catastrophic change. The pathway to such sudden changes is created by the slow changes in the initial parameters so that the governing equilibrium state can no longer be sustained and the system must find a new equilibrium that could have vastly different energy mix– of thermal, flow–kinetic and magnetic energies. In one such scenario, macro–scale flow kinetic, and magnetic energies abound in the final state. For the given multi–component plasma, we show that the flow (strongly Super–Alfvénic) kinetic energy is mostly carried by the small hot electron component. Under specific conditions, it is possible to generate strong macro–scale magnetic (velocity) field when all of the flow (magnetic) field energy is converted to the magnetic (velocity) field energy at the catastrophe. The analysis is applied to explain various observed characteristics of white dwarf (WD) systems, in particular, of the magnetic and dense/degenerate type.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":"370 6","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Catastrophic formation of macro-scale flow and magnetic fields in the relativistic gas of binary systems\",\"authors\":\"E. Saralidze,&nbsp;N. L. Shatashvili,&nbsp;S. M. Mahajan,&nbsp;E. Dadiani\",\"doi\":\"10.1007/s10509-025-04456-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>It is shown that a simple quasi–equilibrium analysis of a multi-component plasma can be harnessed to explain catastrophic energy transformations in astrophysical objects. We limit ourselves to the particular class of binary systems for which the typical plasma consists of one classical ion component, and two relativistic electron components – the bulk degenerate electron gas with a small contamination of hot electrons. We derive, analytically, the conditions conducive to such a catastrophic change. The pathway to such sudden changes is created by the slow changes in the initial parameters so that the governing equilibrium state can no longer be sustained and the system must find a new equilibrium that could have vastly different energy mix– of thermal, flow–kinetic and magnetic energies. In one such scenario, macro–scale flow kinetic, and magnetic energies abound in the final state. For the given multi–component plasma, we show that the flow (strongly Super–Alfvénic) kinetic energy is mostly carried by the small hot electron component. Under specific conditions, it is possible to generate strong macro–scale magnetic (velocity) field when all of the flow (magnetic) field energy is converted to the magnetic (velocity) field energy at the catastrophe. The analysis is applied to explain various observed characteristics of white dwarf (WD) systems, in particular, of the magnetic and dense/degenerate type.</p></div>\",\"PeriodicalId\":8644,\"journal\":{\"name\":\"Astrophysics and Space Science\",\"volume\":\"370 6\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrophysics and Space Science\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10509-025-04456-1\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysics and Space Science","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10509-025-04456-1","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

结果表明,多组分等离子体的简单准平衡分析可以用来解释天体物理对象中的灾难性能量转换。我们将自己局限于一类特殊的二元系统,其中典型的等离子体由一个经典离子成分和两个相对论电子成分组成——带有少量热电子污染的大块简并电子气体。通过分析,我们得出了促成这种灾难性变化的条件。这种突然变化的途径是由初始参数的缓慢变化创造的,因此控制平衡状态不能再持续下去,系统必须找到一个新的平衡,这个平衡可能具有截然不同的能量组合——热能、流动能和磁能。在一个这样的场景中,宏观尺度的流动动能和磁能在最终状态中大量存在。对于给定的多组分等离子体,我们证明了流动动能(强super - alfvsamicic)主要由小的热电子组分携带。在特定条件下,当所有流(磁)场能量都转换为突变时的磁(速度)场能量时,就有可能产生较强的宏观尺度磁(速度)场。该分析应用于解释白矮星(WD)系统的各种观测特征,特别是磁性和致密/简并型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Catastrophic formation of macro-scale flow and magnetic fields in the relativistic gas of binary systems

It is shown that a simple quasi–equilibrium analysis of a multi-component plasma can be harnessed to explain catastrophic energy transformations in astrophysical objects. We limit ourselves to the particular class of binary systems for which the typical plasma consists of one classical ion component, and two relativistic electron components – the bulk degenerate electron gas with a small contamination of hot electrons. We derive, analytically, the conditions conducive to such a catastrophic change. The pathway to such sudden changes is created by the slow changes in the initial parameters so that the governing equilibrium state can no longer be sustained and the system must find a new equilibrium that could have vastly different energy mix– of thermal, flow–kinetic and magnetic energies. In one such scenario, macro–scale flow kinetic, and magnetic energies abound in the final state. For the given multi–component plasma, we show that the flow (strongly Super–Alfvénic) kinetic energy is mostly carried by the small hot electron component. Under specific conditions, it is possible to generate strong macro–scale magnetic (velocity) field when all of the flow (magnetic) field energy is converted to the magnetic (velocity) field energy at the catastrophe. The analysis is applied to explain various observed characteristics of white dwarf (WD) systems, in particular, of the magnetic and dense/degenerate type.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Astrophysics and Space Science
Astrophysics and Space Science 地学天文-天文与天体物理
CiteScore
3.40
自引率
5.30%
发文量
106
审稿时长
2-4 weeks
期刊介绍: Astrophysics and Space Science publishes original contributions and invited reviews covering the entire range of astronomy, astrophysics, astrophysical cosmology, planetary and space science and the astrophysical aspects of astrobiology. This includes both observational and theoretical research, the techniques of astronomical instrumentation and data analysis and astronomical space instrumentation. We particularly welcome papers in the general fields of high-energy astrophysics, astrophysical and astrochemical studies of the interstellar medium including star formation, planetary astrophysics, the formation and evolution of galaxies and the evolution of large scale structure in the Universe. Papers in mathematical physics or in general relativity which do not establish clear astrophysical applications will no longer be considered. The journal also publishes topically selected special issues in research fields of particular scientific interest. These consist of both invited reviews and original research papers. Conference proceedings will not be considered. All papers published in the journal are subject to thorough and strict peer-reviewing. Astrophysics and Space Science features short publication times after acceptance and colour printing free of charge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信