具有分布延迟的反应-扩散成瘾流行病模型中的行波

IF 1 4区 数学 Q2 MATHEMATICS, APPLIED
Hamid Toumi, Khaled Boudjema Djeffal, Abdelheq Mezouaghi, Rassim Darazirar, Salih Djilali
{"title":"具有分布延迟的反应-扩散成瘾流行病模型中的行波","authors":"Hamid Toumi,&nbsp;Khaled Boudjema Djeffal,&nbsp;Abdelheq Mezouaghi,&nbsp;Rassim Darazirar,&nbsp;Salih Djilali","doi":"10.1007/s10440-025-00736-8","DOIUrl":null,"url":null,"abstract":"<div><p>This study examines whether a traveling wave solution for an addiction reaction-diffusion epidemic model with dispersed delays exists or not. The primary characteristic of the model is the potential weakness in the standard comparison principle, which prevents many known conclusions from being applied. If the basic reproduction number of the model, indicated by <span>\\(R_{0}\\)</span>, is larger than one, there is a minimal wave speed, denoted by <span>\\(c^{*}&gt;0\\)</span>, such that the system admits a nontrivial traveling wave solution with wave speed <span>\\(c\\)</span> when <span>\\(c\\geq c^{*}\\)</span>. However, for either <span>\\(R_{0}&gt;1\\)</span> and <span>\\(c&lt; c^{*}\\)</span>, or <span>\\(R_{0}&lt;1\\)</span>, there is no nontrivial traveling wave solution.</p></div>","PeriodicalId":53132,"journal":{"name":"Acta Applicandae Mathematicae","volume":"198 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Traveling Waves in a Reaction-Diffusion Addiction Epidemic Model with Distributed Delays\",\"authors\":\"Hamid Toumi,&nbsp;Khaled Boudjema Djeffal,&nbsp;Abdelheq Mezouaghi,&nbsp;Rassim Darazirar,&nbsp;Salih Djilali\",\"doi\":\"10.1007/s10440-025-00736-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study examines whether a traveling wave solution for an addiction reaction-diffusion epidemic model with dispersed delays exists or not. The primary characteristic of the model is the potential weakness in the standard comparison principle, which prevents many known conclusions from being applied. If the basic reproduction number of the model, indicated by <span>\\\\(R_{0}\\\\)</span>, is larger than one, there is a minimal wave speed, denoted by <span>\\\\(c^{*}&gt;0\\\\)</span>, such that the system admits a nontrivial traveling wave solution with wave speed <span>\\\\(c\\\\)</span> when <span>\\\\(c\\\\geq c^{*}\\\\)</span>. However, for either <span>\\\\(R_{0}&gt;1\\\\)</span> and <span>\\\\(c&lt; c^{*}\\\\)</span>, or <span>\\\\(R_{0}&lt;1\\\\)</span>, there is no nontrivial traveling wave solution.</p></div>\",\"PeriodicalId\":53132,\"journal\":{\"name\":\"Acta Applicandae Mathematicae\",\"volume\":\"198 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Applicandae Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10440-025-00736-8\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Applicandae Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10440-025-00736-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究具有分散延迟的成瘾反应扩散流行病模型是否存在行波解。该模型的主要特点是标准比较原则的潜在弱点,这阻碍了许多已知结论的应用。如果模型的基本再现数\(R_{0}\)大于1,则存在一个最小波速\(c^{*}>0\),使得系统在\(c\geq c^{*}\)时允许存在波速\(c\)的非平凡行波解。然而,对于\(R_{0}>1\)和\(c< c^{*}\),或\(R_{0}<1\),不存在非平凡行波解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Traveling Waves in a Reaction-Diffusion Addiction Epidemic Model with Distributed Delays

This study examines whether a traveling wave solution for an addiction reaction-diffusion epidemic model with dispersed delays exists or not. The primary characteristic of the model is the potential weakness in the standard comparison principle, which prevents many known conclusions from being applied. If the basic reproduction number of the model, indicated by \(R_{0}\), is larger than one, there is a minimal wave speed, denoted by \(c^{*}>0\), such that the system admits a nontrivial traveling wave solution with wave speed \(c\) when \(c\geq c^{*}\). However, for either \(R_{0}>1\) and \(c< c^{*}\), or \(R_{0}<1\), there is no nontrivial traveling wave solution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Applicandae Mathematicae
Acta Applicandae Mathematicae 数学-应用数学
CiteScore
2.80
自引率
6.20%
发文量
77
审稿时长
16.2 months
期刊介绍: Acta Applicandae Mathematicae is devoted to the art and techniques of applying mathematics and the development of new, applicable mathematical methods. Covering a large spectrum from modeling to qualitative analysis and computational methods, Acta Applicandae Mathematicae contains papers on different aspects of the relationship between theory and applications, ranging from descriptive papers on actual applications meeting contemporary mathematical standards to proofs of new and deep theorems in applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信