{"title":"作为素环上交换映射的广义偏导","authors":"Pallavee Gupta, S. K. Tiwari","doi":"10.1007/s11565-025-00596-y","DOIUrl":null,"url":null,"abstract":"<div><p>Suppose <i>R</i> is a non-commutative prime ring with char<span>\\((R)\\ne 2\\)</span>. Suppose that <span>\\(\\kappa \\left( x_{1}, \\ldots , x_{n}\\right) \\)</span> is a noncentral multilinear polynomial over <i>C</i>, <span>\\(S=\\{\\kappa (\\wp _1,\\ldots ,\\wp _n) \\mid \\wp _1,\\ldots ,\\wp _n \\in R\\}\\)</span>. If <i>F</i>, <i>G</i> and <i>H</i> are three generalized skew-derivations on <i>R</i> associated to the same automorphism <span>\\(\\beta \\)</span> such that </p><div><div><span>$$ H\\left( \\xi \\right) \\xi -F(\\xi )G(\\xi )=0 $$</span></div></div><p>for each <span>\\(\\xi \\in S\\)</span>. Let <span>\\(g_1,g_2,g_3 \\)</span> be the associated skew derivations respectively of <i>H</i>, <i>F</i> and <i>G</i>, such that <span>\\(g_1,g_2,g_3\\)</span> are commuting with <span>\\(\\beta \\)</span>. Then we shall give the structure of <i>H</i>, <i>F</i> and <i>G</i>.</p></div>","PeriodicalId":35009,"journal":{"name":"Annali dell''Universita di Ferrara","volume":"71 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized skew-derivations acting as commuting maps on prime rings\",\"authors\":\"Pallavee Gupta, S. K. Tiwari\",\"doi\":\"10.1007/s11565-025-00596-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Suppose <i>R</i> is a non-commutative prime ring with char<span>\\\\((R)\\\\ne 2\\\\)</span>. Suppose that <span>\\\\(\\\\kappa \\\\left( x_{1}, \\\\ldots , x_{n}\\\\right) \\\\)</span> is a noncentral multilinear polynomial over <i>C</i>, <span>\\\\(S=\\\\{\\\\kappa (\\\\wp _1,\\\\ldots ,\\\\wp _n) \\\\mid \\\\wp _1,\\\\ldots ,\\\\wp _n \\\\in R\\\\}\\\\)</span>. If <i>F</i>, <i>G</i> and <i>H</i> are three generalized skew-derivations on <i>R</i> associated to the same automorphism <span>\\\\(\\\\beta \\\\)</span> such that </p><div><div><span>$$ H\\\\left( \\\\xi \\\\right) \\\\xi -F(\\\\xi )G(\\\\xi )=0 $$</span></div></div><p>for each <span>\\\\(\\\\xi \\\\in S\\\\)</span>. Let <span>\\\\(g_1,g_2,g_3 \\\\)</span> be the associated skew derivations respectively of <i>H</i>, <i>F</i> and <i>G</i>, such that <span>\\\\(g_1,g_2,g_3\\\\)</span> are commuting with <span>\\\\(\\\\beta \\\\)</span>. Then we shall give the structure of <i>H</i>, <i>F</i> and <i>G</i>.</p></div>\",\"PeriodicalId\":35009,\"journal\":{\"name\":\"Annali dell''Universita di Ferrara\",\"volume\":\"71 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali dell''Universita di Ferrara\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11565-025-00596-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali dell''Universita di Ferrara","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s11565-025-00596-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
Generalized skew-derivations acting as commuting maps on prime rings
Suppose R is a non-commutative prime ring with char\((R)\ne 2\). Suppose that \(\kappa \left( x_{1}, \ldots , x_{n}\right) \) is a noncentral multilinear polynomial over C, \(S=\{\kappa (\wp _1,\ldots ,\wp _n) \mid \wp _1,\ldots ,\wp _n \in R\}\). If F, G and H are three generalized skew-derivations on R associated to the same automorphism \(\beta \) such that
$$ H\left( \xi \right) \xi -F(\xi )G(\xi )=0 $$
for each \(\xi \in S\). Let \(g_1,g_2,g_3 \) be the associated skew derivations respectively of H, F and G, such that \(g_1,g_2,g_3\) are commuting with \(\beta \). Then we shall give the structure of H, F and G.
期刊介绍:
Annali dell''Università di Ferrara is a general mathematical journal publishing high quality papers in all aspects of pure and applied mathematics. After a quick preliminary examination, potentially acceptable contributions will be judged by appropriate international referees. Original research papers are preferred, but well-written surveys on important subjects are also welcome.