三维和四维弹性理论中的广义Cesaro公式

IF 0.9 4区 工程技术 Q4 MECHANICS
S. A. Lurie, P. A. Belov
{"title":"三维和四维弹性理论中的广义Cesaro公式","authors":"S. A. Lurie,&nbsp;P. A. Belov","doi":"10.1134/S0025654425600436","DOIUrl":null,"url":null,"abstract":"<p>Generalized Cesaro formulas are found, allowing to determine the displacement field with an accuracy of up to quadratic polynomials through integro-differential operators from the strain tensor-deviator in 3D elasticity theory and 4D elasticity theory. It is shown that quadratures for the pseudovector (pseudotensor in 4D elasticity) of local rotations and deformation of volume change are determined by the strain deviator field with an accuracy of up to linear polynomials in coordinates. Conditions for the existence of the listed quadratures are presented in the form of five (nine for 4D) third-differential order compatibility equations with respect to the strain tensor-deviator components.</p>","PeriodicalId":697,"journal":{"name":"Mechanics of Solids","volume":"60 2","pages":"883 - 890"},"PeriodicalIF":0.9000,"publicationDate":"2025-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized Cesaro Formulas in 3D and 4D Elasticity Theories\",\"authors\":\"S. A. Lurie,&nbsp;P. A. Belov\",\"doi\":\"10.1134/S0025654425600436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Generalized Cesaro formulas are found, allowing to determine the displacement field with an accuracy of up to quadratic polynomials through integro-differential operators from the strain tensor-deviator in 3D elasticity theory and 4D elasticity theory. It is shown that quadratures for the pseudovector (pseudotensor in 4D elasticity) of local rotations and deformation of volume change are determined by the strain deviator field with an accuracy of up to linear polynomials in coordinates. Conditions for the existence of the listed quadratures are presented in the form of five (nine for 4D) third-differential order compatibility equations with respect to the strain tensor-deviator components.</p>\",\"PeriodicalId\":697,\"journal\":{\"name\":\"Mechanics of Solids\",\"volume\":\"60 2\",\"pages\":\"883 - 890\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics of Solids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0025654425600436\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Solids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0025654425600436","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

建立了广义的Cesaro公式,利用三维弹性理论和四维弹性理论中的应变张量-偏差量的积分-微分算子,可以以高达二次多项式的精度确定位移场。结果表明,局部旋转和体积变化的伪向量(四维弹性中的伪张量)的正交是由应变偏差场决定的,其精度在坐标上可达线性多项式。所列正交存在的条件以关于应变张量偏差分量的5个(4D为9个)三阶相容方程的形式给出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized Cesaro Formulas in 3D and 4D Elasticity Theories

Generalized Cesaro formulas are found, allowing to determine the displacement field with an accuracy of up to quadratic polynomials through integro-differential operators from the strain tensor-deviator in 3D elasticity theory and 4D elasticity theory. It is shown that quadratures for the pseudovector (pseudotensor in 4D elasticity) of local rotations and deformation of volume change are determined by the strain deviator field with an accuracy of up to linear polynomials in coordinates. Conditions for the existence of the listed quadratures are presented in the form of five (nine for 4D) third-differential order compatibility equations with respect to the strain tensor-deviator components.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mechanics of Solids
Mechanics of Solids 医学-力学
CiteScore
1.20
自引率
42.90%
发文量
112
审稿时长
6-12 weeks
期刊介绍: Mechanics of Solids publishes articles in the general areas of dynamics of particles and rigid bodies and the mechanics of deformable solids. The journal has a goal of being a comprehensive record of up-to-the-minute research results. The journal coverage is vibration of discrete and continuous systems; stability and optimization of mechanical systems; automatic control theory; dynamics of multiple body systems; elasticity, viscoelasticity and plasticity; mechanics of composite materials; theory of structures and structural stability; wave propagation and impact of solids; fracture mechanics; micromechanics of solids; mechanics of granular and geological materials; structure-fluid interaction; mechanical behavior of materials; gyroscopes and navigation systems; and nanomechanics. Most of the articles in the journal are theoretical and analytical. They present a blend of basic mechanics theory with analysis of contemporary technological problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信