A. A. Fedorets, E. E. Kolmakov, D. N. Medvedev, V. O. Mayorov, L. A. Dombrovsky
{"title":"悬浮液滴簇中溶解物质对水滴大小的影响","authors":"A. A. Fedorets, E. E. Kolmakov, D. N. Medvedev, V. O. Mayorov, L. A. Dombrovsky","doi":"10.1134/S001546282560097X","DOIUrl":null,"url":null,"abstract":"<p>A laboratory technique has been developed to study the effect of dissolved substances on the condensational growth of spherical droplets of water in a self-arranged droplet cluster levitating above a locally heated water surface, as well as on the equilibrium droplet size obtained by infrared heating of the cluster. Inorganic salts such as potassium and sodium chlorides were shown to significantly influence the condensation/evaporation process of water droplets even at low solute concentrations. In contrast, the influence of typical substances used in plant treatments is negligible. The new experimental results can be used to model various technological processes involving aqueous aerosols. These results might also be useful in studies of moisture transfer and precipitation formation in the atmosphere.</p>","PeriodicalId":560,"journal":{"name":"Fluid Dynamics","volume":"60 3","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2025-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Dissolved Substances on the Size of Water Droplets in Levitating Droplet Clusters\",\"authors\":\"A. A. Fedorets, E. E. Kolmakov, D. N. Medvedev, V. O. Mayorov, L. A. Dombrovsky\",\"doi\":\"10.1134/S001546282560097X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A laboratory technique has been developed to study the effect of dissolved substances on the condensational growth of spherical droplets of water in a self-arranged droplet cluster levitating above a locally heated water surface, as well as on the equilibrium droplet size obtained by infrared heating of the cluster. Inorganic salts such as potassium and sodium chlorides were shown to significantly influence the condensation/evaporation process of water droplets even at low solute concentrations. In contrast, the influence of typical substances used in plant treatments is negligible. The new experimental results can be used to model various technological processes involving aqueous aerosols. These results might also be useful in studies of moisture transfer and precipitation formation in the atmosphere.</p>\",\"PeriodicalId\":560,\"journal\":{\"name\":\"Fluid Dynamics\",\"volume\":\"60 3\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fluid Dynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S001546282560097X\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S001546282560097X","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
Effect of Dissolved Substances on the Size of Water Droplets in Levitating Droplet Clusters
A laboratory technique has been developed to study the effect of dissolved substances on the condensational growth of spherical droplets of water in a self-arranged droplet cluster levitating above a locally heated water surface, as well as on the equilibrium droplet size obtained by infrared heating of the cluster. Inorganic salts such as potassium and sodium chlorides were shown to significantly influence the condensation/evaporation process of water droplets even at low solute concentrations. In contrast, the influence of typical substances used in plant treatments is negligible. The new experimental results can be used to model various technological processes involving aqueous aerosols. These results might also be useful in studies of moisture transfer and precipitation formation in the atmosphere.
期刊介绍:
Fluid Dynamics is an international peer reviewed journal that publishes theoretical, computational, and experimental research on aeromechanics, hydrodynamics, plasma dynamics, underground hydrodynamics, and biomechanics of continuous media. Special attention is given to new trends developing at the leading edge of science, such as theory and application of multi-phase flows, chemically reactive flows, liquid and gas flows in electromagnetic fields, new hydrodynamical methods of increasing oil output, new approaches to the description of turbulent flows, etc.