{"title":"论经典力学中称为熵的各种函数","authors":"A. M. Shmatkov","doi":"10.1134/S0025654424605688","DOIUrl":null,"url":null,"abstract":"<p>Thermodynamic entropy and four different functions used to describe it within mechanical models are considered. It is shown that all four variants have properties that differ significantly from the properties of entropy introduced in thermodynamics based on experimental data. It is established that, in order to comply with the approaches used in thermodynamics, the widely used mechanical model of a rarefied gas should consider almost exclusively processes that assume the presence of external forces acting on the system. It is noted that such a requirement allows a new approach to the use of mechanical models for studying irreversible physical phenomena.</p>","PeriodicalId":697,"journal":{"name":"Mechanics of Solids","volume":"60 2","pages":"848 - 856"},"PeriodicalIF":0.9000,"publicationDate":"2025-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Various Functions Called Entropy when Using Classical Mechanics\",\"authors\":\"A. M. Shmatkov\",\"doi\":\"10.1134/S0025654424605688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Thermodynamic entropy and four different functions used to describe it within mechanical models are considered. It is shown that all four variants have properties that differ significantly from the properties of entropy introduced in thermodynamics based on experimental data. It is established that, in order to comply with the approaches used in thermodynamics, the widely used mechanical model of a rarefied gas should consider almost exclusively processes that assume the presence of external forces acting on the system. It is noted that such a requirement allows a new approach to the use of mechanical models for studying irreversible physical phenomena.</p>\",\"PeriodicalId\":697,\"journal\":{\"name\":\"Mechanics of Solids\",\"volume\":\"60 2\",\"pages\":\"848 - 856\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics of Solids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0025654424605688\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Solids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0025654424605688","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
On Various Functions Called Entropy when Using Classical Mechanics
Thermodynamic entropy and four different functions used to describe it within mechanical models are considered. It is shown that all four variants have properties that differ significantly from the properties of entropy introduced in thermodynamics based on experimental data. It is established that, in order to comply with the approaches used in thermodynamics, the widely used mechanical model of a rarefied gas should consider almost exclusively processes that assume the presence of external forces acting on the system. It is noted that such a requirement allows a new approach to the use of mechanical models for studying irreversible physical phenomena.
期刊介绍:
Mechanics of Solids publishes articles in the general areas of dynamics of particles and rigid bodies and the mechanics of deformable solids. The journal has a goal of being a comprehensive record of up-to-the-minute research results. The journal coverage is vibration of discrete and continuous systems; stability and optimization of mechanical systems; automatic control theory; dynamics of multiple body systems; elasticity, viscoelasticity and plasticity; mechanics of composite materials; theory of structures and structural stability; wave propagation and impact of solids; fracture mechanics; micromechanics of solids; mechanics of granular and geological materials; structure-fluid interaction; mechanical behavior of materials; gyroscopes and navigation systems; and nanomechanics. Most of the articles in the journal are theoretical and analytical. They present a blend of basic mechanics theory with analysis of contemporary technological problems.