凸期望下随机极大值原理与动态规划原理的关系

IF 1.7 2区 数学 Q2 MATHEMATICS, APPLIED
Xiaojuan Li, Mingshang Hu
{"title":"凸期望下随机极大值原理与动态规划原理的关系","authors":"Xiaojuan Li,&nbsp;Mingshang Hu","doi":"10.1007/s00245-025-10291-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study the relationship between maximum principle (MP) and dynamic programming principle (DPP) for forward–backward control system under consistent convex expectation dominated by <i>G</i> -expectation. Under the smooth assumptions for the value function, we get the relationship between MP and DPP under a reference probability by establishing a useful estimate. If the value function is not smooth, then we obtain the first-order sub-jet and super-jet of the value function at any <i>t</i>. However, the processing method in this case is much more difficult than that when <i>t</i> equals 0.</p></div>","PeriodicalId":55566,"journal":{"name":"Applied Mathematics and Optimization","volume":"92 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relationship Between Stochastic Maximum Principle and Dynamic Programming Principle Under Convex Expectation\",\"authors\":\"Xiaojuan Li,&nbsp;Mingshang Hu\",\"doi\":\"10.1007/s00245-025-10291-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we study the relationship between maximum principle (MP) and dynamic programming principle (DPP) for forward–backward control system under consistent convex expectation dominated by <i>G</i> -expectation. Under the smooth assumptions for the value function, we get the relationship between MP and DPP under a reference probability by establishing a useful estimate. If the value function is not smooth, then we obtain the first-order sub-jet and super-jet of the value function at any <i>t</i>. However, the processing method in this case is much more difficult than that when <i>t</i> equals 0.</p></div>\",\"PeriodicalId\":55566,\"journal\":{\"name\":\"Applied Mathematics and Optimization\",\"volume\":\"92 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00245-025-10291-1\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Optimization","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00245-025-10291-1","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了以G -期望为主导的一致凸期望下前-后向控制系统的极大值原理(MP)与动态规划原理(DPP)的关系。在对值函数的光滑假设下,通过建立一个有用的估计,得到了参考概率下的MP和DPP之间的关系。如果值函数不光滑,则在任意t处,我们得到值函数的一阶子射流和超射流。但是,这种情况下的处理方法要比t = 0时的处理方法困难得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relationship Between Stochastic Maximum Principle and Dynamic Programming Principle Under Convex Expectation

In this paper, we study the relationship between maximum principle (MP) and dynamic programming principle (DPP) for forward–backward control system under consistent convex expectation dominated by G -expectation. Under the smooth assumptions for the value function, we get the relationship between MP and DPP under a reference probability by establishing a useful estimate. If the value function is not smooth, then we obtain the first-order sub-jet and super-jet of the value function at any t. However, the processing method in this case is much more difficult than that when t equals 0.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
5.60%
发文量
103
审稿时长
>12 weeks
期刊介绍: The Applied Mathematics and Optimization Journal covers a broad range of mathematical methods in particular those that bridge with optimization and have some connection with applications. Core topics include calculus of variations, partial differential equations, stochastic control, optimization of deterministic or stochastic systems in discrete or continuous time, homogenization, control theory, mean field games, dynamic games and optimal transport. Algorithmic, data analytic, machine learning and numerical methods which support the modeling and analysis of optimization problems are encouraged. Of great interest are papers which show some novel idea in either the theory or model which include some connection with potential applications in science and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信