ricci -调和流下热方程的Hamilton型梯度估计

IF 0.3 Q4 MATHEMATICS
Liang-Chu Chang, Nguyen Thac Dung, Chiung-Jue Anna Sung
{"title":"ricci -调和流下热方程的Hamilton型梯度估计","authors":"Liang-Chu Chang,&nbsp;Nguyen Thac Dung,&nbsp;Chiung-Jue Anna Sung","doi":"10.1007/s40306-025-00570-y","DOIUrl":null,"url":null,"abstract":"<div><p>Our aim in this paper is to study the linear heat equation on a Riemannian manifold evolving by the Ricci-harmonic flow. We first show a Hamilton type gradient estimate for the positive solution of the heat equation, which allows us to derive a Harnack inequality. It is worthy to note that comparing with the Li-Yau type estimate by Bailesteanu [1], our gradient estimate can be obtained without any assumption on the harmonic quantity in the flow.</p></div>","PeriodicalId":45527,"journal":{"name":"Acta Mathematica Vietnamica","volume":"50 2","pages":"273 - 283"},"PeriodicalIF":0.3000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hamilton Type Gradient Estimates for a Heat Equation under the Ricci-harmonic Flow\",\"authors\":\"Liang-Chu Chang,&nbsp;Nguyen Thac Dung,&nbsp;Chiung-Jue Anna Sung\",\"doi\":\"10.1007/s40306-025-00570-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Our aim in this paper is to study the linear heat equation on a Riemannian manifold evolving by the Ricci-harmonic flow. We first show a Hamilton type gradient estimate for the positive solution of the heat equation, which allows us to derive a Harnack inequality. It is worthy to note that comparing with the Li-Yau type estimate by Bailesteanu [1], our gradient estimate can be obtained without any assumption on the harmonic quantity in the flow.</p></div>\",\"PeriodicalId\":45527,\"journal\":{\"name\":\"Acta Mathematica Vietnamica\",\"volume\":\"50 2\",\"pages\":\"273 - 283\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Vietnamica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40306-025-00570-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Vietnamica","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40306-025-00570-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是研究由里奇-谐波流演化的黎曼流形上的线性热方程。我们首先展示了热方程正解的Hamilton型梯度估计,这使我们能够推导出哈纳克不等式。值得注意的是,与Bailesteanu[1]的Li-Yau型估计相比,我们的梯度估计可以在不假设流中谐波量的情况下得到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hamilton Type Gradient Estimates for a Heat Equation under the Ricci-harmonic Flow

Our aim in this paper is to study the linear heat equation on a Riemannian manifold evolving by the Ricci-harmonic flow. We first show a Hamilton type gradient estimate for the positive solution of the heat equation, which allows us to derive a Harnack inequality. It is worthy to note that comparing with the Li-Yau type estimate by Bailesteanu [1], our gradient estimate can be obtained without any assumption on the harmonic quantity in the flow.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
23
期刊介绍: Acta Mathematica Vietnamica is a peer-reviewed mathematical journal. The journal publishes original papers of high quality in all branches of Mathematics with strong focus on Algebraic Geometry and Commutative Algebra, Algebraic Topology, Complex Analysis, Dynamical Systems, Optimization and Partial Differential Equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信