轴对称脉冲射流发生器中的自振荡和与腔边界不稳定性相关的高频区

IF 0.6 4区 工程技术 Q4 MECHANICS
S. A. Ocheretyanyi, V. V. Prokof’ev, G. V. Topeitsev, E. V. Filatov
{"title":"轴对称脉冲射流发生器中的自振荡和与腔边界不稳定性相关的高频区","authors":"S. A. Ocheretyanyi,&nbsp;V. V. Prokof’ev,&nbsp;G. V. Topeitsev,&nbsp;E. V. Filatov","doi":"10.1134/S0015462825600658","DOIUrl":null,"url":null,"abstract":"<p>Liquid jet flows in the presence of a ventilated cavity with a negative cavitation number are investigated. The studies carried out in the Institute of Mechanics of Moscow State University show that under certain conditions cavitation-induced self-oscillations can occur in the hydraulic system with highly intense pressure fluctuations. The results of an investigation of the axisymmetric model of a pulsed jet generator with liquid jet outflow through a central orifice in a diaphragm and gas blow from the periphery beyond the diaphragm are presented. The two-phase medium outflow was realized through a convergent conical nozzle. The influence of the generator parameters and the distance to a wall (screen) on the efficiency of its operation is investigated. A narrow range of comparatively small blowing, in which high-frequency pressure oscillations are recorded, while the amplitude of impact pressure pulses on the screen is considerably higher than the amplitude of pulses in high-frequency generation regimes, is revealed. This flow regime can be due to the development of two-phase structures on the unstable jet boundary interactioning with the convergent nozzle walls. The evidence for the possible existence of this flow regime has been given by the solution of the plane problem of interaction between a finite jet and an inclined plate for different pressures on the jet surfaces. The problem was solved exactly using the methods of theory of functions of a complex variable for quasi-doubly-periodic theta functions.</p>","PeriodicalId":560,"journal":{"name":"Fluid Dynamics","volume":"60 3","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2025-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-Oscillations in an Axisymmetric Generator of Pulsed Jets and High-Frequency Regime Associated with Cavity Boundary Instability\",\"authors\":\"S. A. Ocheretyanyi,&nbsp;V. V. Prokof’ev,&nbsp;G. V. Topeitsev,&nbsp;E. V. Filatov\",\"doi\":\"10.1134/S0015462825600658\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Liquid jet flows in the presence of a ventilated cavity with a negative cavitation number are investigated. The studies carried out in the Institute of Mechanics of Moscow State University show that under certain conditions cavitation-induced self-oscillations can occur in the hydraulic system with highly intense pressure fluctuations. The results of an investigation of the axisymmetric model of a pulsed jet generator with liquid jet outflow through a central orifice in a diaphragm and gas blow from the periphery beyond the diaphragm are presented. The two-phase medium outflow was realized through a convergent conical nozzle. The influence of the generator parameters and the distance to a wall (screen) on the efficiency of its operation is investigated. A narrow range of comparatively small blowing, in which high-frequency pressure oscillations are recorded, while the amplitude of impact pressure pulses on the screen is considerably higher than the amplitude of pulses in high-frequency generation regimes, is revealed. This flow regime can be due to the development of two-phase structures on the unstable jet boundary interactioning with the convergent nozzle walls. The evidence for the possible existence of this flow regime has been given by the solution of the plane problem of interaction between a finite jet and an inclined plate for different pressures on the jet surfaces. The problem was solved exactly using the methods of theory of functions of a complex variable for quasi-doubly-periodic theta functions.</p>\",\"PeriodicalId\":560,\"journal\":{\"name\":\"Fluid Dynamics\",\"volume\":\"60 3\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fluid Dynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0015462825600658\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0015462825600658","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了具有负空化数的通风空腔存在下的液体射流。在莫斯科国立大学力学研究所进行的研究表明,在一定条件下,具有强烈压力波动的液压系统会发生空化诱导的自振荡。本文对脉冲射流发生器的轴对称模型进行了研究,其中液体射流通过膜片中心孔流出,气体从膜片外围吹出。两相介质流出是通过锥形喷嘴实现的。研究了发电机参数和与墙(筛)的距离对其运行效率的影响。揭示了一个相对较小的吹风范围,其中记录了高频压力振荡,而屏幕上的冲击压力脉冲幅度大大高于高频产生机制中的脉冲幅度。这种流动状态可能是由于不稳定射流边界上的两相结构的发展与收敛的喷嘴壁相互作用。有限射流与倾斜板在不同压力下相互作用的平面问题的解,为这种流型可能存在提供了证据。用复变函数理论的方法对拟双周期函数进行了精确求解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Self-Oscillations in an Axisymmetric Generator of Pulsed Jets and High-Frequency Regime Associated with Cavity Boundary Instability

Self-Oscillations in an Axisymmetric Generator of Pulsed Jets and High-Frequency Regime Associated with Cavity Boundary Instability

Liquid jet flows in the presence of a ventilated cavity with a negative cavitation number are investigated. The studies carried out in the Institute of Mechanics of Moscow State University show that under certain conditions cavitation-induced self-oscillations can occur in the hydraulic system with highly intense pressure fluctuations. The results of an investigation of the axisymmetric model of a pulsed jet generator with liquid jet outflow through a central orifice in a diaphragm and gas blow from the periphery beyond the diaphragm are presented. The two-phase medium outflow was realized through a convergent conical nozzle. The influence of the generator parameters and the distance to a wall (screen) on the efficiency of its operation is investigated. A narrow range of comparatively small blowing, in which high-frequency pressure oscillations are recorded, while the amplitude of impact pressure pulses on the screen is considerably higher than the amplitude of pulses in high-frequency generation regimes, is revealed. This flow regime can be due to the development of two-phase structures on the unstable jet boundary interactioning with the convergent nozzle walls. The evidence for the possible existence of this flow regime has been given by the solution of the plane problem of interaction between a finite jet and an inclined plate for different pressures on the jet surfaces. The problem was solved exactly using the methods of theory of functions of a complex variable for quasi-doubly-periodic theta functions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fluid Dynamics
Fluid Dynamics MECHANICS-PHYSICS, FLUIDS & PLASMAS
CiteScore
1.30
自引率
22.20%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Fluid Dynamics is an international peer reviewed journal that publishes theoretical, computational, and experimental research on aeromechanics, hydrodynamics, plasma dynamics, underground hydrodynamics, and biomechanics of continuous media. Special attention is given to new trends developing at the leading edge of science, such as theory and application of multi-phase flows, chemically reactive flows, liquid and gas flows in electromagnetic fields, new hydrodynamical methods of increasing oil output, new approaches to the description of turbulent flows, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信