三维Dirac方程平滑估计的最优常数

IF 1.6 3区 数学 Q1 MATHEMATICS
Makoto Ikoma, Soichiro Suzuki
{"title":"三维Dirac方程平滑估计的最优常数","authors":"Makoto Ikoma,&nbsp;Soichiro Suzuki","doi":"10.1007/s13324-025-01083-5","DOIUrl":null,"url":null,"abstract":"<div><p>Recently,Ikoma [8] considered optimal constants and extremisers for the 2-dimensional Dirac equation using the spherical harmonics decomposition. Though its argument is valid in any dimensions <span>\\(d \\ge 2\\)</span>, the case <span>\\(d \\ge 3\\)</span> remains open since it leads us to too complicated calculation: determining all eigenvalues and eigenvectors of infinite dimensional matrices. In this paper, we give optimal constants and extremisers of smoothing estimates for the 3-dimensional Dirac equation. In order to prove this, we construct a certain orthonormal basis of spherical harmonics. With respect to this basis, infinite dimensional matrices actually become block diagonal and so that eigenvalues and eigenvectors can be easily found. As applications, we obtain the equivalence of the smoothing estimate for the Schrödinger equation and the Dirac equation, and improve a result by Ben-Artzi and Umeda [3].</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"15 4","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13324-025-01083-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Optimal constants of smoothing estimates for the 3D Dirac equation\",\"authors\":\"Makoto Ikoma,&nbsp;Soichiro Suzuki\",\"doi\":\"10.1007/s13324-025-01083-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recently,Ikoma [8] considered optimal constants and extremisers for the 2-dimensional Dirac equation using the spherical harmonics decomposition. Though its argument is valid in any dimensions <span>\\\\(d \\\\ge 2\\\\)</span>, the case <span>\\\\(d \\\\ge 3\\\\)</span> remains open since it leads us to too complicated calculation: determining all eigenvalues and eigenvectors of infinite dimensional matrices. In this paper, we give optimal constants and extremisers of smoothing estimates for the 3-dimensional Dirac equation. In order to prove this, we construct a certain orthonormal basis of spherical harmonics. With respect to this basis, infinite dimensional matrices actually become block diagonal and so that eigenvalues and eigenvectors can be easily found. As applications, we obtain the equivalence of the smoothing estimate for the Schrödinger equation and the Dirac equation, and improve a result by Ben-Artzi and Umeda [3].</p></div>\",\"PeriodicalId\":48860,\"journal\":{\"name\":\"Analysis and Mathematical Physics\",\"volume\":\"15 4\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s13324-025-01083-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Mathematical Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13324-025-01083-5\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-025-01083-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

最近,Ikoma[8]利用球谐分解方法研究了二维Dirac方程的最优常数和极值。虽然它的参数在任何维度上都是有效的\(d \ge 2\),但情况\(d \ge 3\)仍然是开放的,因为它导致我们过于复杂的计算:确定无限维矩阵的所有特征值和特征向量。本文给出了三维Dirac方程平滑估计的最优常数和极值。为了证明这一点,我们构造了球面谐波的一组正交基。对于这个基,无限维矩阵实际上变成了块对角线所以特征值和特征向量可以很容易地找到。作为应用,我们得到了Schrödinger方程和Dirac方程的平滑估计的等价性,并改进了Ben-Artzi和Umeda[3]的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal constants of smoothing estimates for the 3D Dirac equation

Recently,Ikoma [8] considered optimal constants and extremisers for the 2-dimensional Dirac equation using the spherical harmonics decomposition. Though its argument is valid in any dimensions \(d \ge 2\), the case \(d \ge 3\) remains open since it leads us to too complicated calculation: determining all eigenvalues and eigenvectors of infinite dimensional matrices. In this paper, we give optimal constants and extremisers of smoothing estimates for the 3-dimensional Dirac equation. In order to prove this, we construct a certain orthonormal basis of spherical harmonics. With respect to this basis, infinite dimensional matrices actually become block diagonal and so that eigenvalues and eigenvectors can be easily found. As applications, we obtain the equivalence of the smoothing estimate for the Schrödinger equation and the Dirac equation, and improve a result by Ben-Artzi and Umeda [3].

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信