{"title":"沿康达面注入径向射流时轴对称通道内流动结构的数值研究","authors":"M. A. Pakhomov, N. P. Skibina, V. I. Terekhov","doi":"10.1134/S001546282460473X","DOIUrl":null,"url":null,"abstract":"<p>The results of numerical study of the flow in a channel with an annular radial jet injected along the Coanda surface are given. To describe the flow of the gas medium, the two-dimensional axisymmetric Reynolds-averaged Navier-Stokes (RANS) equations are used in combination with equations of the semi-empirical <i>k</i>–ω SST turbulence model. The effect of the total pressure and the width of radial jet on the velocity and static pressure distributions is studied and changes in the local structure developed at the sub- and supercritical pressure in the jet are described.</p>","PeriodicalId":560,"journal":{"name":"Fluid Dynamics","volume":"60 3","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2025-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Study of Flow Structure in an Axisymmetric Channel with Injection of a Radial Jet along the Coanda Surface\",\"authors\":\"M. A. Pakhomov, N. P. Skibina, V. I. Terekhov\",\"doi\":\"10.1134/S001546282460473X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The results of numerical study of the flow in a channel with an annular radial jet injected along the Coanda surface are given. To describe the flow of the gas medium, the two-dimensional axisymmetric Reynolds-averaged Navier-Stokes (RANS) equations are used in combination with equations of the semi-empirical <i>k</i>–ω SST turbulence model. The effect of the total pressure and the width of radial jet on the velocity and static pressure distributions is studied and changes in the local structure developed at the sub- and supercritical pressure in the jet are described.</p>\",\"PeriodicalId\":560,\"journal\":{\"name\":\"Fluid Dynamics\",\"volume\":\"60 3\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fluid Dynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S001546282460473X\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S001546282460473X","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
Numerical Study of Flow Structure in an Axisymmetric Channel with Injection of a Radial Jet along the Coanda Surface
The results of numerical study of the flow in a channel with an annular radial jet injected along the Coanda surface are given. To describe the flow of the gas medium, the two-dimensional axisymmetric Reynolds-averaged Navier-Stokes (RANS) equations are used in combination with equations of the semi-empirical k–ω SST turbulence model. The effect of the total pressure and the width of radial jet on the velocity and static pressure distributions is studied and changes in the local structure developed at the sub- and supercritical pressure in the jet are described.
期刊介绍:
Fluid Dynamics is an international peer reviewed journal that publishes theoretical, computational, and experimental research on aeromechanics, hydrodynamics, plasma dynamics, underground hydrodynamics, and biomechanics of continuous media. Special attention is given to new trends developing at the leading edge of science, such as theory and application of multi-phase flows, chemically reactive flows, liquid and gas flows in electromagnetic fields, new hydrodynamical methods of increasing oil output, new approaches to the description of turbulent flows, etc.