面加劲指数梯度横向各向同性半空间的Mindlin问题

IF 1.4 3区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY
Parham Samea, S. Farzad Ahmadi
{"title":"面加劲指数梯度横向各向同性半空间的Mindlin问题","authors":"Parham Samea,&nbsp;S. Farzad Ahmadi","doi":"10.1007/s10659-025-10147-3","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents an analytical solution for an exponentially-graded transversely isotropic half-space reinforced by a thin plate, subjected to frictionless contact conditions and buried static point loads. The adopted material model captures the behavior of anisotropic and functionally graded media with improved accuracy compared to the assumption of transverse isotropy. Expressions for displacement field are derived, integrating material anisotropy, functional gradation, and interface conditions. The results show that increasing the thin plate stiffness significantly reduces the normal displacement of the half-space, with displacement nearly vanishing under extreme conditions. Additionally, variations in material gradation initially lead to a substantial reduction in displacement, while specific reinforcement conditions may result in localized increases. These findings provide insights into the mechanical behavior of surface-reinforced anisotropic media and multi-layered structures in applications such as protective coatings, pavements, and ground reinforcements.</p></div>","PeriodicalId":624,"journal":{"name":"Journal of Elasticity","volume":"157 3","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mindlin’s Problem for a Surface-Stiffened Exponentially-Graded Transversely Isotropic Half-Space\",\"authors\":\"Parham Samea,&nbsp;S. Farzad Ahmadi\",\"doi\":\"10.1007/s10659-025-10147-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study presents an analytical solution for an exponentially-graded transversely isotropic half-space reinforced by a thin plate, subjected to frictionless contact conditions and buried static point loads. The adopted material model captures the behavior of anisotropic and functionally graded media with improved accuracy compared to the assumption of transverse isotropy. Expressions for displacement field are derived, integrating material anisotropy, functional gradation, and interface conditions. The results show that increasing the thin plate stiffness significantly reduces the normal displacement of the half-space, with displacement nearly vanishing under extreme conditions. Additionally, variations in material gradation initially lead to a substantial reduction in displacement, while specific reinforcement conditions may result in localized increases. These findings provide insights into the mechanical behavior of surface-reinforced anisotropic media and multi-layered structures in applications such as protective coatings, pavements, and ground reinforcements.</p></div>\",\"PeriodicalId\":624,\"journal\":{\"name\":\"Journal of Elasticity\",\"volume\":\"157 3\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Elasticity\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10659-025-10147-3\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Elasticity","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10659-025-10147-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了受无摩擦接触条件和埋置静力点载荷作用下,由薄板增强的指数梯度横向各向同性半空间的解析解。与横向各向同性假设相比,所采用的材料模型更准确地捕捉了各向异性和功能梯度介质的行为。综合材料各向异性、功能梯度和界面条件,导出了位移场的表达式。结果表明,增加薄板刚度可显著降低半空间的法向位移,在极端条件下位移几乎消失。此外,材料级配的变化最初会导致位移的大幅减少,而特定的加固条件可能会导致局部位移的增加。这些发现为表面增强各向异性介质和多层结构在保护涂层、路面和地面增强等应用中的力学行为提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Mindlin’s Problem for a Surface-Stiffened Exponentially-Graded Transversely Isotropic Half-Space

Mindlin’s Problem for a Surface-Stiffened Exponentially-Graded Transversely Isotropic Half-Space

This study presents an analytical solution for an exponentially-graded transversely isotropic half-space reinforced by a thin plate, subjected to frictionless contact conditions and buried static point loads. The adopted material model captures the behavior of anisotropic and functionally graded media with improved accuracy compared to the assumption of transverse isotropy. Expressions for displacement field are derived, integrating material anisotropy, functional gradation, and interface conditions. The results show that increasing the thin plate stiffness significantly reduces the normal displacement of the half-space, with displacement nearly vanishing under extreme conditions. Additionally, variations in material gradation initially lead to a substantial reduction in displacement, while specific reinforcement conditions may result in localized increases. These findings provide insights into the mechanical behavior of surface-reinforced anisotropic media and multi-layered structures in applications such as protective coatings, pavements, and ground reinforcements.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Elasticity
Journal of Elasticity 工程技术-材料科学:综合
CiteScore
3.70
自引率
15.00%
发文量
74
审稿时长
>12 weeks
期刊介绍: The Journal of Elasticity was founded in 1971 by Marvin Stippes (1922-1979), with its main purpose being to report original and significant discoveries in elasticity. The Journal has broadened in scope over the years to include original contributions in the physical and mathematical science of solids. The areas of rational mechanics, mechanics of materials, including theories of soft materials, biomechanics, and engineering sciences that contribute to fundamental advancements in understanding and predicting the complex behavior of solids are particularly welcomed. The role of elasticity in all such behavior is well recognized and reporting significant discoveries in elasticity remains important to the Journal, as is its relation to thermal and mass transport, electromagnetism, and chemical reactions. Fundamental research that applies the concepts of physics and elements of applied mathematical science is of particular interest. Original research contributions will appear as either full research papers or research notes. Well-documented historical essays and reviews also are welcomed. Materials that will prove effective in teaching will appear as classroom notes. Computational and/or experimental investigations that emphasize relationships to the modeling of the novel physical behavior of solids at all scales are of interest. Guidance principles for content are to be found in the current interests of the Editorial Board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信