伪单胞菌富集Kleisli对象

IF 0.5 4区 数学 Q3 MATHEMATICS
Adrian Miranda
{"title":"伪单胞菌富集Kleisli对象","authors":"Adrian Miranda","doi":"10.1007/s10485-025-09810-6","DOIUrl":null,"url":null,"abstract":"<div><p>A pseudomonad on a 2-category whose underlying endomorphism is a 2-functor can be seen as a diagram <span>\\(\\textbf{Psmnd} \\rightarrow \\textbf{Gray}\\)</span> for which weighted limits and colimits can be considered. The 2-category of pseudoalgebras, pseudomorphisms and 2-cells is such a Gray-enriched weighted limit [21], however neither the Kleisli bicategory nor the 2-category of free pseudoalgebras are the analogous weighted colimit [13]. In this paper we describe the actual weighted colimit via a presentation, and show that the comparison 2-functor induced by any other pseudoadjunction splitting the original pseudomonad is bi-fully faithful. As a consequence, we see that biessential surjectivity on objects characterises left pseudoadjoints whose codomains have an ‘up to biequivalence’ version of the universal property for Kleisli objects. This motivates a homotopical study of Kleisli objects for pseudomonads, and to this end we show that the weight for Kleisli objects is cofibrant in the projective model structure on the enriched functor category <span>\\([\\textbf{Psmnd}^\\text {op} , \\textbf{Gray}]\\)</span>.</p></div>","PeriodicalId":7952,"journal":{"name":"Applied Categorical Structures","volume":"33 4","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10485-025-09810-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Enriched Kleisli Objects for Pseudomonads\",\"authors\":\"Adrian Miranda\",\"doi\":\"10.1007/s10485-025-09810-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A pseudomonad on a 2-category whose underlying endomorphism is a 2-functor can be seen as a diagram <span>\\\\(\\\\textbf{Psmnd} \\\\rightarrow \\\\textbf{Gray}\\\\)</span> for which weighted limits and colimits can be considered. The 2-category of pseudoalgebras, pseudomorphisms and 2-cells is such a Gray-enriched weighted limit [21], however neither the Kleisli bicategory nor the 2-category of free pseudoalgebras are the analogous weighted colimit [13]. In this paper we describe the actual weighted colimit via a presentation, and show that the comparison 2-functor induced by any other pseudoadjunction splitting the original pseudomonad is bi-fully faithful. As a consequence, we see that biessential surjectivity on objects characterises left pseudoadjoints whose codomains have an ‘up to biequivalence’ version of the universal property for Kleisli objects. This motivates a homotopical study of Kleisli objects for pseudomonads, and to this end we show that the weight for Kleisli objects is cofibrant in the projective model structure on the enriched functor category <span>\\\\([\\\\textbf{Psmnd}^\\\\text {op} , \\\\textbf{Gray}]\\\\)</span>.</p></div>\",\"PeriodicalId\":7952,\"journal\":{\"name\":\"Applied Categorical Structures\",\"volume\":\"33 4\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10485-025-09810-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Categorical Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10485-025-09810-6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Categorical Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10485-025-09810-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

2范畴上的伪单,其底层自同态是2函子,可以看作是一个图\(\textbf{Psmnd} \rightarrow \textbf{Gray}\),可以考虑其加权极限和极限。假代数、假同态和2-细胞的2范畴是这样一个富集灰色的加权极限[21],而无论是Kleisli双范畴还是自由假代数的2范畴都不是类似的加权极限[13]。本文通过一种表述描述了实际的加权极限,并证明了由任何其他伪附加分裂原伪单线所引起的比较2函子是双完全可靠的。因此,我们看到对象上的双本质满性刻画了左拟伴,其上域具有Kleisli对象的“完全双等价”的泛性质。这激发了对假单胞菌的Kleisli对象的同局部研究,为此,我们证明了Kleisli对象的权值在富函子范畴\([\textbf{Psmnd}^\text {op} , \textbf{Gray}]\)上的投影模型结构中是一致的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enriched Kleisli Objects for Pseudomonads

A pseudomonad on a 2-category whose underlying endomorphism is a 2-functor can be seen as a diagram \(\textbf{Psmnd} \rightarrow \textbf{Gray}\) for which weighted limits and colimits can be considered. The 2-category of pseudoalgebras, pseudomorphisms and 2-cells is such a Gray-enriched weighted limit [21], however neither the Kleisli bicategory nor the 2-category of free pseudoalgebras are the analogous weighted colimit [13]. In this paper we describe the actual weighted colimit via a presentation, and show that the comparison 2-functor induced by any other pseudoadjunction splitting the original pseudomonad is bi-fully faithful. As a consequence, we see that biessential surjectivity on objects characterises left pseudoadjoints whose codomains have an ‘up to biequivalence’ version of the universal property for Kleisli objects. This motivates a homotopical study of Kleisli objects for pseudomonads, and to this end we show that the weight for Kleisli objects is cofibrant in the projective model structure on the enriched functor category \([\textbf{Psmnd}^\text {op} , \textbf{Gray}]\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
16.70%
发文量
29
审稿时长
>12 weeks
期刊介绍: Applied Categorical Structures focuses on applications of results, techniques and ideas from category theory to mathematics, physics and computer science. These include the study of topological and algebraic categories, representation theory, algebraic geometry, homological and homotopical algebra, derived and triangulated categories, categorification of (geometric) invariants, categorical investigations in mathematical physics, higher category theory and applications, categorical investigations in functional analysis, in continuous order theory and in theoretical computer science. In addition, the journal also follows the development of emerging fields in which the application of categorical methods proves to be relevant. Applied Categorical Structures publishes both carefully refereed research papers and survey papers. It promotes communication and increases the dissemination of new results and ideas among mathematicians and computer scientists who use categorical methods in their research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信