用不动点定理研究Hadamard积分微分方程的可解性

Q2 Mathematics
Hamid Reza Sahebi, Manochehr Kazemi
{"title":"用不动点定理研究Hadamard积分微分方程的可解性","authors":"Hamid Reza Sahebi,&nbsp;Manochehr Kazemi","doi":"10.1007/s11565-025-00603-2","DOIUrl":null,"url":null,"abstract":"<div><p>This paper investigates the existence of solutions for nonlinear fractional Hadamard integro-differential equations with boundary conditions. The analysis is based on classical fixed-point theories, including Petryshyan’s and Banach’s fixed-point theorems. Some examples are provided to demonstrate the theoretical findings.</p></div>","PeriodicalId":35009,"journal":{"name":"Annali dell''Universita di Ferrara","volume":"71 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the solvability of Hadamard integro-differential equations via fixed point theorem\",\"authors\":\"Hamid Reza Sahebi,&nbsp;Manochehr Kazemi\",\"doi\":\"10.1007/s11565-025-00603-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper investigates the existence of solutions for nonlinear fractional Hadamard integro-differential equations with boundary conditions. The analysis is based on classical fixed-point theories, including Petryshyan’s and Banach’s fixed-point theorems. Some examples are provided to demonstrate the theoretical findings.</p></div>\",\"PeriodicalId\":35009,\"journal\":{\"name\":\"Annali dell''Universita di Ferrara\",\"volume\":\"71 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali dell''Universita di Ferrara\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11565-025-00603-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali dell''Universita di Ferrara","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s11565-025-00603-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

研究一类具有边界条件的非线性分数阶Hadamard积分微分方程解的存在性。该分析基于经典不动点理论,包括Petryshyan不动点定理和Banach不动点定理。通过实例对理论结果进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the solvability of Hadamard integro-differential equations via fixed point theorem

This paper investigates the existence of solutions for nonlinear fractional Hadamard integro-differential equations with boundary conditions. The analysis is based on classical fixed-point theories, including Petryshyan’s and Banach’s fixed-point theorems. Some examples are provided to demonstrate the theoretical findings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annali dell''Universita di Ferrara
Annali dell''Universita di Ferrara Mathematics-Mathematics (all)
CiteScore
1.70
自引率
0.00%
发文量
71
期刊介绍: Annali dell''Università di Ferrara is a general mathematical journal publishing high quality papers in all aspects of pure and applied mathematics. After a quick preliminary examination, potentially acceptable contributions will be judged by appropriate international referees. Original research papers are preferred, but well-written surveys on important subjects are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信