二维不可压缩欧拉方程的稳定连续涡斑偶极子解

IF 2.4 1区 数学 Q1 MATHEMATICS, APPLIED
De Huang, Jiajun Tong
{"title":"二维不可压缩欧拉方程的稳定连续涡斑偶极子解","authors":"De Huang,&nbsp;Jiajun Tong","doi":"10.1007/s00205-025-02113-z","DOIUrl":null,"url":null,"abstract":"<div><p>We rigorously construct the first steady traveling wave solutions of the 2D incompressible Euler equation that take the form of a contiguous vortex-patch dipole, which can be viewed as the vortex-patch counterpart of the well-known Lamb–Chaplygin dipole. Our construction is based on a novel fixed-point approach that determines the patch boundary as the fixed point of a certain nonlinear map. Smoothness and other properties of the patch boundary are also obtained.</p></div>","PeriodicalId":55484,"journal":{"name":"Archive for Rational Mechanics and Analysis","volume":"249 4","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Steady Contiguous Vortex-Patch Dipole Solutions of the 2D Incompressible Euler Equation\",\"authors\":\"De Huang,&nbsp;Jiajun Tong\",\"doi\":\"10.1007/s00205-025-02113-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We rigorously construct the first steady traveling wave solutions of the 2D incompressible Euler equation that take the form of a contiguous vortex-patch dipole, which can be viewed as the vortex-patch counterpart of the well-known Lamb–Chaplygin dipole. Our construction is based on a novel fixed-point approach that determines the patch boundary as the fixed point of a certain nonlinear map. Smoothness and other properties of the patch boundary are also obtained.</p></div>\",\"PeriodicalId\":55484,\"journal\":{\"name\":\"Archive for Rational Mechanics and Analysis\",\"volume\":\"249 4\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive for Rational Mechanics and Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00205-025-02113-z\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Rational Mechanics and Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-025-02113-z","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们严格地构造了二维不可压缩欧拉方程的第一个稳定行波解,其形式为连续涡斑偶极子,可以看作是著名的Lamb-Chaplygin偶极子的涡斑对应物。我们的构造基于一种新颖的不动点方法,该方法确定斑块边界作为某个非线性映射的不动点。得到了斑块边界的平滑性和其他性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Steady Contiguous Vortex-Patch Dipole Solutions of the 2D Incompressible Euler Equation

We rigorously construct the first steady traveling wave solutions of the 2D incompressible Euler equation that take the form of a contiguous vortex-patch dipole, which can be viewed as the vortex-patch counterpart of the well-known Lamb–Chaplygin dipole. Our construction is based on a novel fixed-point approach that determines the patch boundary as the fixed point of a certain nonlinear map. Smoothness and other properties of the patch boundary are also obtained.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.10
自引率
8.00%
发文量
98
审稿时长
4-8 weeks
期刊介绍: The Archive for Rational Mechanics and Analysis nourishes the discipline of mechanics as a deductive, mathematical science in the classical tradition and promotes analysis, particularly in the context of application. Its purpose is to give rapid and full publication to research of exceptional moment, depth and permanence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信