{"title":"关于正交多项式序列及其递推系数:1","authors":"D. Mbouna","doi":"10.1007/s11005-025-01963-8","DOIUrl":null,"url":null,"abstract":"<div><p>Following D. Mbouna [Lett. Math. Phys. 114:54, 2024], a new method is provided to recognize and characterize a classical orthogonal polynomial sequence defined on a quadratic lattice only by the three-term recurrence relation. This characterization includes all orthogonal polynomials in the Askey scheme (including the para-Krawtchouk polynomials), covering then all those defined on linear and constant lattices. This work suggests a simple and implementable algorithm/package for some known physical problems.</p></div>","PeriodicalId":685,"journal":{"name":"Letters in Mathematical Physics","volume":"115 3","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On an orthogonal polynomial sequence and its recurrence coefficients: II\",\"authors\":\"D. Mbouna\",\"doi\":\"10.1007/s11005-025-01963-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Following D. Mbouna [Lett. Math. Phys. 114:54, 2024], a new method is provided to recognize and characterize a classical orthogonal polynomial sequence defined on a quadratic lattice only by the three-term recurrence relation. This characterization includes all orthogonal polynomials in the Askey scheme (including the para-Krawtchouk polynomials), covering then all those defined on linear and constant lattices. This work suggests a simple and implementable algorithm/package for some known physical problems.</p></div>\",\"PeriodicalId\":685,\"journal\":{\"name\":\"Letters in Mathematical Physics\",\"volume\":\"115 3\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Letters in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11005-025-01963-8\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11005-025-01963-8","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
On an orthogonal polynomial sequence and its recurrence coefficients: II
Following D. Mbouna [Lett. Math. Phys. 114:54, 2024], a new method is provided to recognize and characterize a classical orthogonal polynomial sequence defined on a quadratic lattice only by the three-term recurrence relation. This characterization includes all orthogonal polynomials in the Askey scheme (including the para-Krawtchouk polynomials), covering then all those defined on linear and constant lattices. This work suggests a simple and implementable algorithm/package for some known physical problems.
期刊介绍:
The aim of Letters in Mathematical Physics is to attract the community''s attention on important and original developments in the area of mathematical physics and contemporary theoretical physics. The journal publishes letters and longer research articles, occasionally also articles containing topical reviews. We are committed to both fast publication and careful refereeing. In addition, the journal offers important contributions to modern mathematics in fields which have a potential physical application, and important developments in theoretical physics which have potential mathematical impact.