离散时间尺度上Hermite-Hadamard不等式的新版本

IF 1.6 3区 数学 Q1 MATHEMATICS
Hüseyin Budak
{"title":"离散时间尺度上Hermite-Hadamard不等式的新版本","authors":"Hüseyin Budak","doi":"10.1007/s13324-025-01106-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we first introduced two time scales based on the interval [<i>a</i>, <i>b</i>] and <span>\\( \\mathbb {Z} \\)</span>. Then, by using one of these time scale and substitutions rules, we prove a new version of discrete Hermite-Hadamard inequality for discrete convex functions. Moreover, we investigate the fractional version of this inequality involving fractional delta and nabla sums.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"15 4","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New versions of Hermite–Hadamard inequalities on Discrete Time Scales\",\"authors\":\"Hüseyin Budak\",\"doi\":\"10.1007/s13324-025-01106-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we first introduced two time scales based on the interval [<i>a</i>, <i>b</i>] and <span>\\\\( \\\\mathbb {Z} \\\\)</span>. Then, by using one of these time scale and substitutions rules, we prove a new version of discrete Hermite-Hadamard inequality for discrete convex functions. Moreover, we investigate the fractional version of this inequality involving fractional delta and nabla sums.</p></div>\",\"PeriodicalId\":48860,\"journal\":{\"name\":\"Analysis and Mathematical Physics\",\"volume\":\"15 4\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Mathematical Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13324-025-01106-1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-025-01106-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文首先引入了基于区间[a, b]和\( \mathbb {Z} \)的两个时间尺度。然后,利用这些时间尺度和替换规则之一,证明了离散凸函数的离散Hermite-Hadamard不等式的一个新版本。此外,我们研究了包含分数阶delta和nabla和的分数阶不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New versions of Hermite–Hadamard inequalities on Discrete Time Scales

In this paper, we first introduced two time scales based on the interval [ab] and \( \mathbb {Z} \). Then, by using one of these time scale and substitutions rules, we prove a new version of discrete Hermite-Hadamard inequality for discrete convex functions. Moreover, we investigate the fractional version of this inequality involving fractional delta and nabla sums.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信