高强度集装箱钢在多道次变形条件下的流动应力模型

IF 2.6 3区 材料科学 Q2 ENGINEERING, MANUFACTURING
Xiaoguang Zhou, Shan Jiang, Xin Ma, Xin Li, Jinfan Zhao, Guangming Cao, Zhenyu Liu
{"title":"高强度集装箱钢在多道次变形条件下的流动应力模型","authors":"Xiaoguang Zhou,&nbsp;Shan Jiang,&nbsp;Xin Ma,&nbsp;Xin Li,&nbsp;Jinfan Zhao,&nbsp;Guangming Cao,&nbsp;Zhenyu Liu","doi":"10.1007/s12289-025-01929-0","DOIUrl":null,"url":null,"abstract":"<div><p>Multi-pass compression deformation experiments for a high-strength container steel have been conducted on the DIL805A/D thermal expansion instrument. The true stress- plastic strain curves of experimental steel were plotted. Three typical flow stress models are used to predict the flow stress of the first pass deformation, and Model-1 flow stress model with the highest fitting accuracy is selected as the basic model form. Also, high precision static recrystallization volume fraction model and austenite grain size model have been established. The genetic algorithm is used to optimize the parameters in Model-1 model according to the second pass flow stress data. The relationships between static recrystallization volume fraction, the initial austenite grain size, the dislocation density before deformation, the deformation temperature, the strain rate and the model parameters are established through the Support Vector Machine (SVM) algorithm. The established flow stress model not only has high accuracy but also conforms to physical metallurgical principles under multi-pass steel deformation conditions according to a maximum plastic strain of 0.25. The research results can provide an important theoretical guidance for the load distribution of the rolling mill for the production of high-strength container plate.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"18 3","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flow stress model of high-strength container steel under multi-pass deformation conditions\",\"authors\":\"Xiaoguang Zhou,&nbsp;Shan Jiang,&nbsp;Xin Ma,&nbsp;Xin Li,&nbsp;Jinfan Zhao,&nbsp;Guangming Cao,&nbsp;Zhenyu Liu\",\"doi\":\"10.1007/s12289-025-01929-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Multi-pass compression deformation experiments for a high-strength container steel have been conducted on the DIL805A/D thermal expansion instrument. The true stress- plastic strain curves of experimental steel were plotted. Three typical flow stress models are used to predict the flow stress of the first pass deformation, and Model-1 flow stress model with the highest fitting accuracy is selected as the basic model form. Also, high precision static recrystallization volume fraction model and austenite grain size model have been established. The genetic algorithm is used to optimize the parameters in Model-1 model according to the second pass flow stress data. The relationships between static recrystallization volume fraction, the initial austenite grain size, the dislocation density before deformation, the deformation temperature, the strain rate and the model parameters are established through the Support Vector Machine (SVM) algorithm. The established flow stress model not only has high accuracy but also conforms to physical metallurgical principles under multi-pass steel deformation conditions according to a maximum plastic strain of 0.25. The research results can provide an important theoretical guidance for the load distribution of the rolling mill for the production of high-strength container plate.</p></div>\",\"PeriodicalId\":591,\"journal\":{\"name\":\"International Journal of Material Forming\",\"volume\":\"18 3\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Material Forming\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12289-025-01929-0\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Material Forming","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12289-025-01929-0","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

在DIL805A/D热膨胀仪上对某高强度集装箱钢进行了多道次压缩变形试验。绘制了试验钢的真应力-塑性应变曲线。采用3种典型的流动应力模型预测首道变形的流动应力,选择拟合精度最高的model -1流动应力模型作为基本模型形式。建立了高精度静态再结晶体积分数模型和奥氏体晶粒尺寸模型。根据二次渗流应力数据,采用遗传算法对模型1中的参数进行优化。通过支持向量机(SVM)算法建立了静态再结晶体积分数、变形前奥氏体初始晶粒尺寸、位错密度、变形温度、应变速率与模型参数之间的关系。在最大塑性应变为0.25的多道次钢变形条件下,所建立的流变应力模型不仅精度高,而且符合物理冶金原理。研究结果可为生产高强度集装箱板轧机的载荷分配提供重要的理论指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Flow stress model of high-strength container steel under multi-pass deformation conditions

Flow stress model of high-strength container steel under multi-pass deformation conditions

Multi-pass compression deformation experiments for a high-strength container steel have been conducted on the DIL805A/D thermal expansion instrument. The true stress- plastic strain curves of experimental steel were plotted. Three typical flow stress models are used to predict the flow stress of the first pass deformation, and Model-1 flow stress model with the highest fitting accuracy is selected as the basic model form. Also, high precision static recrystallization volume fraction model and austenite grain size model have been established. The genetic algorithm is used to optimize the parameters in Model-1 model according to the second pass flow stress data. The relationships between static recrystallization volume fraction, the initial austenite grain size, the dislocation density before deformation, the deformation temperature, the strain rate and the model parameters are established through the Support Vector Machine (SVM) algorithm. The established flow stress model not only has high accuracy but also conforms to physical metallurgical principles under multi-pass steel deformation conditions according to a maximum plastic strain of 0.25. The research results can provide an important theoretical guidance for the load distribution of the rolling mill for the production of high-strength container plate.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Material Forming
International Journal of Material Forming ENGINEERING, MANUFACTURING-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
5.10
自引率
4.20%
发文量
76
审稿时长
>12 weeks
期刊介绍: The Journal publishes and disseminates original research in the field of material forming. The research should constitute major achievements in the understanding, modeling or simulation of material forming processes. In this respect ‘forming’ implies a deliberate deformation of material. The journal establishes a platform of communication between engineers and scientists, covering all forming processes, including sheet forming, bulk forming, powder forming, forming in near-melt conditions (injection moulding, thixoforming, film blowing etc.), micro-forming, hydro-forming, thermo-forming, incremental forming etc. Other manufacturing technologies like machining and cutting can be included if the focus of the work is on plastic deformations. All materials (metals, ceramics, polymers, composites, glass, wood, fibre reinforced materials, materials in food processing, biomaterials, nano-materials, shape memory alloys etc.) and approaches (micro-macro modelling, thermo-mechanical modelling, numerical simulation including new and advanced numerical strategies, experimental analysis, inverse analysis, model identification, optimization, design and control of forming tools and machines, wear and friction, mechanical behavior and formability of materials etc.) are concerned.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信