{"title":"Grand-Schnyder森林","authors":"Olivier Bernardi, Éric Fusy, Shizhe Liang","doi":"10.1007/s00026-024-00729-8","DOIUrl":null,"url":null,"abstract":"<div><p>We define a far-reaching generalization of Schnyder woods which encompasses many classical combinatorial structures on planar graphs. <i>Schnyder woods</i> are defined for planar triangulations as certain triples of spanning trees covering the triangulation and crossing each other in an orderly fashion. They are of theoretical and practical importance, as they are central to the proof that the order dimension of any planar graph is at most 3, and they are also underlying an elegant drawing algorithm. In this article, we extend the concept of Schnyder wood well beyond its original setting: for any integer <span>\\(d\\ge 3\\)</span>, we define a “grand-Schnyder” structure for (embedded) planar graphs which have faces of degree at most <i>d</i> and non-facial cycles of length at least <i>d</i>. We prove the existence of grand-Schnyder structures, provide a linear construction algorithm, describe 4 different incarnations (in terms of tuples of trees, corner labelings, weighted orientations, and marked orientations), and define a lattice for the set of grand-Schnyder structures of a given planar graph. We show that the grand-Schnyder framework unifies and extends several classical constructions: Schnyder woods and Schnyder decompositions, regular edge-labelings (a.k.a. transversal structures), and Felsner woods.</p></div>","PeriodicalId":50769,"journal":{"name":"Annals of Combinatorics","volume":"29 2","pages":"273 - 373"},"PeriodicalIF":0.7000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Grand-Schnyder Woods\",\"authors\":\"Olivier Bernardi, Éric Fusy, Shizhe Liang\",\"doi\":\"10.1007/s00026-024-00729-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We define a far-reaching generalization of Schnyder woods which encompasses many classical combinatorial structures on planar graphs. <i>Schnyder woods</i> are defined for planar triangulations as certain triples of spanning trees covering the triangulation and crossing each other in an orderly fashion. They are of theoretical and practical importance, as they are central to the proof that the order dimension of any planar graph is at most 3, and they are also underlying an elegant drawing algorithm. In this article, we extend the concept of Schnyder wood well beyond its original setting: for any integer <span>\\\\(d\\\\ge 3\\\\)</span>, we define a “grand-Schnyder” structure for (embedded) planar graphs which have faces of degree at most <i>d</i> and non-facial cycles of length at least <i>d</i>. We prove the existence of grand-Schnyder structures, provide a linear construction algorithm, describe 4 different incarnations (in terms of tuples of trees, corner labelings, weighted orientations, and marked orientations), and define a lattice for the set of grand-Schnyder structures of a given planar graph. We show that the grand-Schnyder framework unifies and extends several classical constructions: Schnyder woods and Schnyder decompositions, regular edge-labelings (a.k.a. transversal structures), and Felsner woods.</p></div>\",\"PeriodicalId\":50769,\"journal\":{\"name\":\"Annals of Combinatorics\",\"volume\":\"29 2\",\"pages\":\"273 - 373\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00026-024-00729-8\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00026-024-00729-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
We define a far-reaching generalization of Schnyder woods which encompasses many classical combinatorial structures on planar graphs. Schnyder woods are defined for planar triangulations as certain triples of spanning trees covering the triangulation and crossing each other in an orderly fashion. They are of theoretical and practical importance, as they are central to the proof that the order dimension of any planar graph is at most 3, and they are also underlying an elegant drawing algorithm. In this article, we extend the concept of Schnyder wood well beyond its original setting: for any integer \(d\ge 3\), we define a “grand-Schnyder” structure for (embedded) planar graphs which have faces of degree at most d and non-facial cycles of length at least d. We prove the existence of grand-Schnyder structures, provide a linear construction algorithm, describe 4 different incarnations (in terms of tuples of trees, corner labelings, weighted orientations, and marked orientations), and define a lattice for the set of grand-Schnyder structures of a given planar graph. We show that the grand-Schnyder framework unifies and extends several classical constructions: Schnyder woods and Schnyder decompositions, regular edge-labelings (a.k.a. transversal structures), and Felsner woods.
期刊介绍:
Annals of Combinatorics publishes outstanding contributions to combinatorics with a particular focus on algebraic and analytic combinatorics, as well as the areas of graph and matroid theory. Special regard will be given to new developments and topics of current interest to the community represented by our editorial board.
The scope of Annals of Combinatorics is covered by the following three tracks:
Algebraic Combinatorics:
Enumerative combinatorics, symmetric functions, Schubert calculus / Combinatorial Hopf algebras, cluster algebras, Lie algebras, root systems, Coxeter groups / Discrete geometry, tropical geometry / Discrete dynamical systems / Posets and lattices
Analytic and Algorithmic Combinatorics:
Asymptotic analysis of counting sequences / Bijective combinatorics / Univariate and multivariable singularity analysis / Combinatorics and differential equations / Resolution of hard combinatorial problems by making essential use of computers / Advanced methods for evaluating counting sequences or combinatorial constants / Complexity and decidability aspects of combinatorial sequences / Combinatorial aspects of the analysis of algorithms
Graphs and Matroids:
Structural graph theory, graph minors, graph sparsity, decompositions and colorings / Planar graphs and topological graph theory, geometric representations of graphs / Directed graphs, posets / Metric graph theory / Spectral and algebraic graph theory / Random graphs, extremal graph theory / Matroids, oriented matroids, matroid minors / Algorithmic approaches