Zhi-Ping Zhou, Zhi-Heng Tan, Jin-Long Lv, Shu-Ye Zhang, Di Liu
{"title":"退火和应变速率对选择性激光熔化316L奥氏体不锈钢显微组织和力学性能的影响","authors":"Zhi-Ping Zhou, Zhi-Heng Tan, Jin-Long Lv, Shu-Ye Zhang, Di Liu","doi":"10.1007/s40436-024-00528-7","DOIUrl":null,"url":null,"abstract":"<div><p>New insights are proposed regarding the α′-martensite transformation and strengthening mechanisms of austenitic stainless steel 316L fabricated using selective laser melting (SLM-ed 316L SS). This study investigates the effects of annealing on the microstructural evolution, mechanical properties, and corrosion resistance of SLM-ed 316L SS specimens. The exceptional ultimate tensile strength (807 MPa) and good elongation (24.6%) of SLM-ed 316L SS was achieved by SLM process and annealing treatment at 900 °C for 1 h, which was attributed to effective dislocation strengthening and grain boundary strengthening. During tensile deformation, annealed samples exhibited deformation twinning as a result of the migration from high-angle grain boundaries to low-angle grain boundaries, facilitating the α′-martensite transformation. Consequently, a deformation mechanism model is proposed. The contribution of dislocation strengthening (~61.4%) is the most important strengthening factor for SLM-ed 316L SS annealed 900 °C for 1 h, followed by grain boundary strengthening and solid solution strengthening. Furthermore, the corrosion resistance of SLM-ed 316L SS after annealing treatment is poor due to its limited re-passivation ability.</p></div>","PeriodicalId":7342,"journal":{"name":"Advances in Manufacturing","volume":"13 3","pages":"634 - 654"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of annealing and strain rate on the microstructure and mechanical properties of austenitic stainless steel 316L manufactured by selective laser melting\",\"authors\":\"Zhi-Ping Zhou, Zhi-Heng Tan, Jin-Long Lv, Shu-Ye Zhang, Di Liu\",\"doi\":\"10.1007/s40436-024-00528-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>New insights are proposed regarding the α′-martensite transformation and strengthening mechanisms of austenitic stainless steel 316L fabricated using selective laser melting (SLM-ed 316L SS). This study investigates the effects of annealing on the microstructural evolution, mechanical properties, and corrosion resistance of SLM-ed 316L SS specimens. The exceptional ultimate tensile strength (807 MPa) and good elongation (24.6%) of SLM-ed 316L SS was achieved by SLM process and annealing treatment at 900 °C for 1 h, which was attributed to effective dislocation strengthening and grain boundary strengthening. During tensile deformation, annealed samples exhibited deformation twinning as a result of the migration from high-angle grain boundaries to low-angle grain boundaries, facilitating the α′-martensite transformation. Consequently, a deformation mechanism model is proposed. The contribution of dislocation strengthening (~61.4%) is the most important strengthening factor for SLM-ed 316L SS annealed 900 °C for 1 h, followed by grain boundary strengthening and solid solution strengthening. Furthermore, the corrosion resistance of SLM-ed 316L SS after annealing treatment is poor due to its limited re-passivation ability.</p></div>\",\"PeriodicalId\":7342,\"journal\":{\"name\":\"Advances in Manufacturing\",\"volume\":\"13 3\",\"pages\":\"634 - 654\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40436-024-00528-7\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s40436-024-00528-7","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Effect of annealing and strain rate on the microstructure and mechanical properties of austenitic stainless steel 316L manufactured by selective laser melting
New insights are proposed regarding the α′-martensite transformation and strengthening mechanisms of austenitic stainless steel 316L fabricated using selective laser melting (SLM-ed 316L SS). This study investigates the effects of annealing on the microstructural evolution, mechanical properties, and corrosion resistance of SLM-ed 316L SS specimens. The exceptional ultimate tensile strength (807 MPa) and good elongation (24.6%) of SLM-ed 316L SS was achieved by SLM process and annealing treatment at 900 °C for 1 h, which was attributed to effective dislocation strengthening and grain boundary strengthening. During tensile deformation, annealed samples exhibited deformation twinning as a result of the migration from high-angle grain boundaries to low-angle grain boundaries, facilitating the α′-martensite transformation. Consequently, a deformation mechanism model is proposed. The contribution of dislocation strengthening (~61.4%) is the most important strengthening factor for SLM-ed 316L SS annealed 900 °C for 1 h, followed by grain boundary strengthening and solid solution strengthening. Furthermore, the corrosion resistance of SLM-ed 316L SS after annealing treatment is poor due to its limited re-passivation ability.
期刊介绍:
As an innovative, fundamental and scientific journal, Advances in Manufacturing aims to describe the latest regional and global research results and forefront developments in advanced manufacturing field. As such, it serves as an international platform for academic exchange between experts, scholars and researchers in this field.
All articles in Advances in Manufacturing are peer reviewed. Respected scholars from the fields of advanced manufacturing fields will be invited to write some comments. We also encourage and give priority to research papers that have made major breakthroughs or innovations in the fundamental theory. The targeted fields include: manufacturing automation, mechatronics and robotics, precision manufacturing and control, micro-nano-manufacturing, green manufacturing, design in manufacturing, metallic and nonmetallic materials in manufacturing, metallurgical process, etc. The forms of articles include (but not limited to): academic articles, research reports, and general reviews.