基于有序持久同调的回波状态网络耦合复杂性分析

IF 0.8 Q4 ROBOTICS
Taichi Haruna
{"title":"基于有序持久同调的回波状态网络耦合复杂性分析","authors":"Taichi Haruna","doi":"10.1007/s10015-025-01010-8","DOIUrl":null,"url":null,"abstract":"<div><p>We study coupling complexity in multivariate time series generated by echo state networks subject to i.i.d. input signals using the ordinal persistent index as a coupling complexity measure. Coupling complexity is a notion of complexity focusing on the relations among components of a given system. Given a time segment of a multivariate time series, its ordinal persistent index is defined by taking the persistent homology of a filtered simplicial complex reflecting similarity among the ordinal patterns of individual time series. As the strength of input signals increases, the dynamics of echo state networks shift from asynchronous ones to more synchronized ones. We show that the original ordinal persistent index cannot capture such change in the synchronization behavior, but a generalized version of the ordinal persistent index is sensitive to the change: the latter takes relatively high values between the two extremes, namely when the strength of input signals to the echo state networks is within a certain range of intermediate values.</p></div>","PeriodicalId":46050,"journal":{"name":"Artificial Life and Robotics","volume":"30 3","pages":"417 - 423"},"PeriodicalIF":0.8000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10015-025-01010-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Analysis of coupling complexity in echo state networks via ordinal persistent homology\",\"authors\":\"Taichi Haruna\",\"doi\":\"10.1007/s10015-025-01010-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study coupling complexity in multivariate time series generated by echo state networks subject to i.i.d. input signals using the ordinal persistent index as a coupling complexity measure. Coupling complexity is a notion of complexity focusing on the relations among components of a given system. Given a time segment of a multivariate time series, its ordinal persistent index is defined by taking the persistent homology of a filtered simplicial complex reflecting similarity among the ordinal patterns of individual time series. As the strength of input signals increases, the dynamics of echo state networks shift from asynchronous ones to more synchronized ones. We show that the original ordinal persistent index cannot capture such change in the synchronization behavior, but a generalized version of the ordinal persistent index is sensitive to the change: the latter takes relatively high values between the two extremes, namely when the strength of input signals to the echo state networks is within a certain range of intermediate values.</p></div>\",\"PeriodicalId\":46050,\"journal\":{\"name\":\"Artificial Life and Robotics\",\"volume\":\"30 3\",\"pages\":\"417 - 423\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10015-025-01010-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Life and Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10015-025-01010-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Life and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s10015-025-01010-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

本文采用有序持久指数作为耦合复杂度度量,研究了受i.i.d输入信号影响的回声状态网络产生的多变量时间序列的耦合复杂性。耦合复杂性是关注给定系统中组件之间关系的复杂性概念。给定多变量时间序列的一个时间段,其有序持久指数通过取反映单个时间序列有序模式之间相似性的过滤简单复合体的持久同调来定义。随着输入信号强度的增加,回波状态网络的动态从异步状态向同步状态转变。我们发现,原始的有序持久索引不能捕捉同步行为的这种变化,但广义版本的有序持久索引对这种变化很敏感:后者在两个极端之间的值相对较高,即当回波状态网络的输入信号强度在一定的中间值范围内时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of coupling complexity in echo state networks via ordinal persistent homology

We study coupling complexity in multivariate time series generated by echo state networks subject to i.i.d. input signals using the ordinal persistent index as a coupling complexity measure. Coupling complexity is a notion of complexity focusing on the relations among components of a given system. Given a time segment of a multivariate time series, its ordinal persistent index is defined by taking the persistent homology of a filtered simplicial complex reflecting similarity among the ordinal patterns of individual time series. As the strength of input signals increases, the dynamics of echo state networks shift from asynchronous ones to more synchronized ones. We show that the original ordinal persistent index cannot capture such change in the synchronization behavior, but a generalized version of the ordinal persistent index is sensitive to the change: the latter takes relatively high values between the two extremes, namely when the strength of input signals to the echo state networks is within a certain range of intermediate values.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
22.20%
发文量
101
期刊介绍: Artificial Life and Robotics is an international journal publishing original technical papers and authoritative state-of-the-art reviews on the development of new technologies concerning artificial life and robotics, especially computer-based simulation and hardware for the twenty-first century. This journal covers a broad multidisciplinary field, including areas such as artificial brain research, artificial intelligence, artificial life, artificial living, artificial mind research, brain science, chaos, cognitive science, complexity, computer graphics, evolutionary computations, fuzzy control, genetic algorithms, innovative computations, intelligent control and modelling, micromachines, micro-robot world cup soccer tournament, mobile vehicles, neural networks, neurocomputers, neurocomputing technologies and applications, robotics, robus virtual engineering, and virtual reality. Hardware-oriented submissions are particularly welcome. Publishing body: International Symposium on Artificial Life and RoboticsEditor-in-Chiei: Hiroshi Tanaka Hatanaka R Apartment 101, Hatanaka 8-7A, Ooaza-Hatanaka, Oita city, Oita, Japan 870-0856 ©International Symposium on Artificial Life and Robotics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信