泊松网络SIR流行病模型

IF 0.7 Q2 MATHEMATICS
Josephine Wairimu, Andrew Gothard, Grzegorz Rempala
{"title":"泊松网络SIR流行病模型","authors":"Josephine Wairimu,&nbsp;Andrew Gothard,&nbsp;Grzegorz Rempala","doi":"10.1007/s13370-025-01339-0","DOIUrl":null,"url":null,"abstract":"<div><p>We examine a popular extension of the classical Susceptible-Infected-Recovered (SIR) model within a network-based framework, where node degrees follow a Poisson distribution. First, we review the properties of this extension, its connection to the classical SIR model, and its relationship with the pairwise closure condition for stochastic epidemics on networks. We then apply it to data analysis. This network-based formulation introduces an additional parameter representing the mean node degree, allowing for the incorporation of heterogeneity in contact patterns. Using the extended SIR model, we analyze epidemic data from the 2018–2020 Ebola outbreak in the Democratic Republic of the Congo, employing a survival approach combined with the Hamiltonian Monte Carlo method. Our findings suggest that network-based models more accurately capture epidemic heterogeneity than traditional compartmental models, without introducing unnecessary additional complexity.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"36 3","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13370-025-01339-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Poisson network SIR epidemic model\",\"authors\":\"Josephine Wairimu,&nbsp;Andrew Gothard,&nbsp;Grzegorz Rempala\",\"doi\":\"10.1007/s13370-025-01339-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We examine a popular extension of the classical Susceptible-Infected-Recovered (SIR) model within a network-based framework, where node degrees follow a Poisson distribution. First, we review the properties of this extension, its connection to the classical SIR model, and its relationship with the pairwise closure condition for stochastic epidemics on networks. We then apply it to data analysis. This network-based formulation introduces an additional parameter representing the mean node degree, allowing for the incorporation of heterogeneity in contact patterns. Using the extended SIR model, we analyze epidemic data from the 2018–2020 Ebola outbreak in the Democratic Republic of the Congo, employing a survival approach combined with the Hamiltonian Monte Carlo method. Our findings suggest that network-based models more accurately capture epidemic heterogeneity than traditional compartmental models, without introducing unnecessary additional complexity.</p></div>\",\"PeriodicalId\":46107,\"journal\":{\"name\":\"Afrika Matematika\",\"volume\":\"36 3\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s13370-025-01339-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Afrika Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13370-025-01339-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-025-01339-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们在基于网络的框架内研究了经典易感-感染-恢复(SIR)模型的流行扩展,其中节点度遵循泊松分布。首先,我们回顾了该扩展的性质,它与经典SIR模型的联系,以及它与网络上随机流行病的两两闭合条件的关系。然后我们将其应用于数据分析。这种基于网络的公式引入了一个表示平均节点度的附加参数,允许在接触模式中合并异质性。利用扩展SIR模型,采用生存法与哈密顿蒙特卡罗方法相结合的方法,分析了刚果民主共和国2018-2020年埃博拉疫情的流行数据。我们的研究结果表明,基于网络的模型比传统的隔间模型更准确地捕捉到流行病的异质性,而不会引入不必要的额外复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Poisson network SIR epidemic model

We examine a popular extension of the classical Susceptible-Infected-Recovered (SIR) model within a network-based framework, where node degrees follow a Poisson distribution. First, we review the properties of this extension, its connection to the classical SIR model, and its relationship with the pairwise closure condition for stochastic epidemics on networks. We then apply it to data analysis. This network-based formulation introduces an additional parameter representing the mean node degree, allowing for the incorporation of heterogeneity in contact patterns. Using the extended SIR model, we analyze epidemic data from the 2018–2020 Ebola outbreak in the Democratic Republic of the Congo, employing a survival approach combined with the Hamiltonian Monte Carlo method. Our findings suggest that network-based models more accurately capture epidemic heterogeneity than traditional compartmental models, without introducing unnecessary additional complexity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Afrika Matematika
Afrika Matematika MATHEMATICS-
CiteScore
2.00
自引率
9.10%
发文量
96
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信