拉格朗日谱左半线极值点的维数集中

IF 0.9 3区 数学 Q2 MATHEMATICS
Carlos Gustavo Moreira, Christian Camilo Silva Villamil
{"title":"拉格朗日谱左半线极值点的维数集中","authors":"Carlos Gustavo Moreira,&nbsp;Christian Camilo Silva Villamil","doi":"10.1007/s10114-025-3683-7","DOIUrl":null,"url":null,"abstract":"<div><p>We prove that for any <i>η</i> that belongs to the closure of the interior of the Markov and Lagrange spectra, the sets <i>k</i><sup>−1</sup>((−∞, <i>η</i>]) and <i>k</i><sup>−1</sup>(<i>η</i>), which are the sets of irrational numbers with best constant of Diophantine approximation bounded by <i>η</i> and exactly <i>η</i> respectively, have the same Hausdorff dimension. We also show that, as <i>η</i> varies in the interior of the spectra, this Hausdorff dimension is a strictly increasing function.</p></div>","PeriodicalId":50893,"journal":{"name":"Acta Mathematica Sinica-English Series","volume":"41 5","pages":"1328 - 1352"},"PeriodicalIF":0.9000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Concentration of Dimension in Extremal Points of Left-half Lines in the Lagrange Spectrum\",\"authors\":\"Carlos Gustavo Moreira,&nbsp;Christian Camilo Silva Villamil\",\"doi\":\"10.1007/s10114-025-3683-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove that for any <i>η</i> that belongs to the closure of the interior of the Markov and Lagrange spectra, the sets <i>k</i><sup>−1</sup>((−∞, <i>η</i>]) and <i>k</i><sup>−1</sup>(<i>η</i>), which are the sets of irrational numbers with best constant of Diophantine approximation bounded by <i>η</i> and exactly <i>η</i> respectively, have the same Hausdorff dimension. We also show that, as <i>η</i> varies in the interior of the spectra, this Hausdorff dimension is a strictly increasing function.</p></div>\",\"PeriodicalId\":50893,\"journal\":{\"name\":\"Acta Mathematica Sinica-English Series\",\"volume\":\"41 5\",\"pages\":\"1328 - 1352\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Sinica-English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10114-025-3683-7\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Sinica-English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-025-3683-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

证明了对于任意属于马尔可夫谱和Lagrange谱内闭包的η,分别以η和完全η为界的Diophantine近似最佳常数的无理数集k−1((−∞,η])和k−1(η)具有相同的Hausdorff维数。我们还表明,当η在光谱内部变化时,这个豪斯多夫维数是一个严格的递增函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Concentration of Dimension in Extremal Points of Left-half Lines in the Lagrange Spectrum

We prove that for any η that belongs to the closure of the interior of the Markov and Lagrange spectra, the sets k−1((−∞, η]) and k−1(η), which are the sets of irrational numbers with best constant of Diophantine approximation bounded by η and exactly η respectively, have the same Hausdorff dimension. We also show that, as η varies in the interior of the spectra, this Hausdorff dimension is a strictly increasing function.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
138
审稿时长
14.5 months
期刊介绍: Acta Mathematica Sinica, established by the Chinese Mathematical Society in 1936, is the first and the best mathematical journal in China. In 1985, Acta Mathematica Sinica is divided into English Series and Chinese Series. The English Series is a monthly journal, publishing significant research papers from all branches of pure and applied mathematics. It provides authoritative reviews of current developments in mathematical research. Contributions are invited from researchers from all over the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信