{"title":"点阵图上一些不定非线性Schrödinger方程的基态解","authors":"Wendi Xu","doi":"10.1007/s10114-025-3111-z","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider the Schrödinger type equation −Δ<i>u</i> + <i>V</i> (<i>x</i>)<i>u</i> = <i>f</i>(<i>x, u</i>) on the lattice graph ℤ<sup><i>N</i></sup> with indefinite variational functional, where Δ is the discrete Laplacian. Specifically, we assume that <i>V</i> (<i>x</i>) and <i>f</i>(<i>x, u</i>) are periodic in <i>x, f</i> satisfies some growth condition and 0 lies in a finite spectral gap of (−Δ + <i>V</i>). We obtain ground state solutions by using the method of generalized Nehari manifold which has been introduced by Pankov.</p></div>","PeriodicalId":50893,"journal":{"name":"Acta Mathematica Sinica-English Series","volume":"41 5","pages":"1279 - 1295"},"PeriodicalIF":0.9000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ground State Solutions to Some Indefinite Nonlinear Schrödinger Equations on Lattice Graphs\",\"authors\":\"Wendi Xu\",\"doi\":\"10.1007/s10114-025-3111-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we consider the Schrödinger type equation −Δ<i>u</i> + <i>V</i> (<i>x</i>)<i>u</i> = <i>f</i>(<i>x, u</i>) on the lattice graph ℤ<sup><i>N</i></sup> with indefinite variational functional, where Δ is the discrete Laplacian. Specifically, we assume that <i>V</i> (<i>x</i>) and <i>f</i>(<i>x, u</i>) are periodic in <i>x, f</i> satisfies some growth condition and 0 lies in a finite spectral gap of (−Δ + <i>V</i>). We obtain ground state solutions by using the method of generalized Nehari manifold which has been introduced by Pankov.</p></div>\",\"PeriodicalId\":50893,\"journal\":{\"name\":\"Acta Mathematica Sinica-English Series\",\"volume\":\"41 5\",\"pages\":\"1279 - 1295\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Sinica-English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10114-025-3111-z\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Sinica-English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-025-3111-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Ground State Solutions to Some Indefinite Nonlinear Schrödinger Equations on Lattice Graphs
In this paper, we consider the Schrödinger type equation −Δu + V (x)u = f(x, u) on the lattice graph ℤN with indefinite variational functional, where Δ is the discrete Laplacian. Specifically, we assume that V (x) and f(x, u) are periodic in x, f satisfies some growth condition and 0 lies in a finite spectral gap of (−Δ + V). We obtain ground state solutions by using the method of generalized Nehari manifold which has been introduced by Pankov.
期刊介绍:
Acta Mathematica Sinica, established by the Chinese Mathematical Society in 1936, is the first and the best mathematical journal in China. In 1985, Acta Mathematica Sinica is divided into English Series and Chinese Series. The English Series is a monthly journal, publishing significant research papers from all branches of pure and applied mathematics. It provides authoritative reviews of current developments in mathematical research. Contributions are invited from researchers from all over the world.