乘性稳定噪声驱动下McKean-Vlasov SDEs的适定性

IF 0.9 3区 数学 Q2 MATHEMATICS
Changsong Deng, Xing Huang
{"title":"乘性稳定噪声驱动下McKean-Vlasov SDEs的适定性","authors":"Changsong Deng,&nbsp;Xing Huang","doi":"10.1007/s10114-025-4030-8","DOIUrl":null,"url":null,"abstract":"<div><p>We establish the well-posedness for a class of McKean–Vlasov SDEs driven by symmetric <i>α</i>-stable Lévy processes (<span>\\({1 \\over 2} &lt;\\alpha \\leq 1\\)</span>), where the drift coefficient is Hölder continuous in space variable, while the noise coefficient is Lipscitz continuous in space variable, and both of them satisfy the Lipschitz condition in distribution variable with respect to Wasserstein distance. If the drift coefficient does not depend on distribution variable, our methodology developed in this paper applies to the case <i>α</i> ∈ (0, 1]. The main tool relies on heat kernel estimates for (distribution independent) stable SDEs and Banach’s fixed point theorem.</p></div>","PeriodicalId":50893,"journal":{"name":"Acta Mathematica Sinica-English Series","volume":"41 5","pages":"1269 - 1278"},"PeriodicalIF":0.9000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Well-Posedness for McKean–Vlasov SDEs Driven by Multiplicative Stable Noises\",\"authors\":\"Changsong Deng,&nbsp;Xing Huang\",\"doi\":\"10.1007/s10114-025-4030-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We establish the well-posedness for a class of McKean–Vlasov SDEs driven by symmetric <i>α</i>-stable Lévy processes (<span>\\\\({1 \\\\over 2} &lt;\\\\alpha \\\\leq 1\\\\)</span>), where the drift coefficient is Hölder continuous in space variable, while the noise coefficient is Lipscitz continuous in space variable, and both of them satisfy the Lipschitz condition in distribution variable with respect to Wasserstein distance. If the drift coefficient does not depend on distribution variable, our methodology developed in this paper applies to the case <i>α</i> ∈ (0, 1]. The main tool relies on heat kernel estimates for (distribution independent) stable SDEs and Banach’s fixed point theorem.</p></div>\",\"PeriodicalId\":50893,\"journal\":{\"name\":\"Acta Mathematica Sinica-English Series\",\"volume\":\"41 5\",\"pages\":\"1269 - 1278\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Sinica-English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10114-025-4030-8\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Sinica-English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-025-4030-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

建立了一类由对称α-稳定lsamvy过程(\({1 \over 2} <\alpha \leq 1\))驱动的McKean-Vlasov SDEs的适定性,其中漂移系数在空间变量上是Hölder连续的,噪声系数在空间变量上是Lipscitz连续的,并且它们在分布变量上都满足关于Wasserstein距离的Lipschitz条件。如果漂移系数不依赖于分布变量,则本文开发的方法适用于α∈(0,1)的情况。主要工具依赖于(分布无关的)稳定SDEs的热核估计和Banach不动点定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Well-Posedness for McKean–Vlasov SDEs Driven by Multiplicative Stable Noises

We establish the well-posedness for a class of McKean–Vlasov SDEs driven by symmetric α-stable Lévy processes (\({1 \over 2} <\alpha \leq 1\)), where the drift coefficient is Hölder continuous in space variable, while the noise coefficient is Lipscitz continuous in space variable, and both of them satisfy the Lipschitz condition in distribution variable with respect to Wasserstein distance. If the drift coefficient does not depend on distribution variable, our methodology developed in this paper applies to the case α ∈ (0, 1]. The main tool relies on heat kernel estimates for (distribution independent) stable SDEs and Banach’s fixed point theorem.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
138
审稿时长
14.5 months
期刊介绍: Acta Mathematica Sinica, established by the Chinese Mathematical Society in 1936, is the first and the best mathematical journal in China. In 1985, Acta Mathematica Sinica is divided into English Series and Chinese Series. The English Series is a monthly journal, publishing significant research papers from all branches of pure and applied mathematics. It provides authoritative reviews of current developments in mathematical research. Contributions are invited from researchers from all over the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信