不同测度产生的广义拟算术均值的不变性

IF 0.7 3区 数学 Q2 MATHEMATICS
Yuli Fan, Qian Zhang
{"title":"不同测度产生的广义拟算术均值的不变性","authors":"Yuli Fan,&nbsp;Qian Zhang","doi":"10.1007/s00010-025-01160-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we investigate the invariance of the arithmetic mean with respect to generalized quasiarithmetic means, that is, solve the functional equation </p><div><div><span>$$\\begin{aligned} &amp; \\left( \\frac{f}{g}\\right) ^{-1}\\left( \\frac{\\int _0^1f(tx+(1-t)y)d\\mu (t)}{\\int _0^1g(tx+(1-t)y)d\\mu (t)}\\right) \\\\ &amp; \\quad + \\left( \\frac{h}{k}\\right) ^{-1}\\left( \\frac{\\int _0^1h(tx+(1-t)y)d\\nu (t)}{\\int _0^1k(tx+(1-t)y)d\\nu (t)}\\right) =x+y,\\quad x,y \\in I, \\end{aligned}$$</span></div></div><p>where <span>\\(f,g,h,k:I\\rightarrow {\\mathbb {R}}\\)</span> are four continuous functions, <i>g</i>, <i>k</i> are positive, <i>f</i>/<i>g</i>, <i>h</i>/<i>k</i> are strictly monotone, and <span>\\(\\mu , \\nu \\)</span> are probability measures over the Borel sets of [0, 1].</p></div>","PeriodicalId":55611,"journal":{"name":"Aequationes Mathematicae","volume":"99 4","pages":"1455 - 1474"},"PeriodicalIF":0.7000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Invariance of generalized quasiarithmetic means generated by different measures\",\"authors\":\"Yuli Fan,&nbsp;Qian Zhang\",\"doi\":\"10.1007/s00010-025-01160-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we investigate the invariance of the arithmetic mean with respect to generalized quasiarithmetic means, that is, solve the functional equation </p><div><div><span>$$\\\\begin{aligned} &amp; \\\\left( \\\\frac{f}{g}\\\\right) ^{-1}\\\\left( \\\\frac{\\\\int _0^1f(tx+(1-t)y)d\\\\mu (t)}{\\\\int _0^1g(tx+(1-t)y)d\\\\mu (t)}\\\\right) \\\\\\\\ &amp; \\\\quad + \\\\left( \\\\frac{h}{k}\\\\right) ^{-1}\\\\left( \\\\frac{\\\\int _0^1h(tx+(1-t)y)d\\\\nu (t)}{\\\\int _0^1k(tx+(1-t)y)d\\\\nu (t)}\\\\right) =x+y,\\\\quad x,y \\\\in I, \\\\end{aligned}$$</span></div></div><p>where <span>\\\\(f,g,h,k:I\\\\rightarrow {\\\\mathbb {R}}\\\\)</span> are four continuous functions, <i>g</i>, <i>k</i> are positive, <i>f</i>/<i>g</i>, <i>h</i>/<i>k</i> are strictly monotone, and <span>\\\\(\\\\mu , \\\\nu \\\\)</span> are probability measures over the Borel sets of [0, 1].</p></div>\",\"PeriodicalId\":55611,\"journal\":{\"name\":\"Aequationes Mathematicae\",\"volume\":\"99 4\",\"pages\":\"1455 - 1474\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aequationes Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00010-025-01160-x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aequationes Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00010-025-01160-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了广义拟算术均值的不变性,即解了一个泛函方程$$\begin{aligned} & \left( \frac{f}{g}\right) ^{-1}\left( \frac{\int _0^1f(tx+(1-t)y)d\mu (t)}{\int _0^1g(tx+(1-t)y)d\mu (t)}\right) \\ & \quad + \left( \frac{h}{k}\right) ^{-1}\left( \frac{\int _0^1h(tx+(1-t)y)d\nu (t)}{\int _0^1k(tx+(1-t)y)d\nu (t)}\right) =x+y,\quad x,y \in I, \end{aligned}$$,其中\(f,g,h,k:I\rightarrow {\mathbb {R}}\)为四个连续函数,g、k为正函数,f/g、h/k为严格单调函数,\(\mu , \nu \)为Borel集[0,1]上的概率测度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Invariance of generalized quasiarithmetic means generated by different measures

In this paper, we investigate the invariance of the arithmetic mean with respect to generalized quasiarithmetic means, that is, solve the functional equation

$$\begin{aligned} & \left( \frac{f}{g}\right) ^{-1}\left( \frac{\int _0^1f(tx+(1-t)y)d\mu (t)}{\int _0^1g(tx+(1-t)y)d\mu (t)}\right) \\ & \quad + \left( \frac{h}{k}\right) ^{-1}\left( \frac{\int _0^1h(tx+(1-t)y)d\nu (t)}{\int _0^1k(tx+(1-t)y)d\nu (t)}\right) =x+y,\quad x,y \in I, \end{aligned}$$

where \(f,g,h,k:I\rightarrow {\mathbb {R}}\) are four continuous functions, gk are positive, f/gh/k are strictly monotone, and \(\mu , \nu \) are probability measures over the Borel sets of [0, 1].

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aequationes Mathematicae
Aequationes Mathematicae MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.70
自引率
12.50%
发文量
62
审稿时长
>12 weeks
期刊介绍: aequationes mathematicae is an international journal of pure and applied mathematics, which emphasizes functional equations, dynamical systems, iteration theory, combinatorics, and geometry. The journal publishes research papers, reports of meetings, and bibliographies. High quality survey articles are an especially welcome feature. In addition, summaries of recent developments and research in the field are published rapidly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信