\((3+1)\)维广义b型Kadomtsev-Petviashvili方程的新解析解

IF 2.1 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Pramana Pub Date : 2025-07-14 DOI:10.1007/s12043-025-02942-3
Ruchi Kaur, Sukhjit Singh, Dharmendra Kumar
{"title":"\\((3+1)\\)维广义b型Kadomtsev-Petviashvili方程的新解析解","authors":"Ruchi Kaur,&nbsp;Sukhjit Singh,&nbsp;Dharmendra Kumar","doi":"10.1007/s12043-025-02942-3","DOIUrl":null,"url":null,"abstract":"<div><p>Genralised B-type Kadomtsev–Petviashvili (gBKP) equation corresponds to the weak dispersive nature of the propagating waves in quasi-media and fluid mechanics. In this paper, a collection of exact soliton and periodic wave solutions are obtained for the (<span>\\(3 + 1\\)</span>)-dimensional gBKP equation using the well-known generalised exponential rational function (GERF) method. Several classes of exact soliton and periodic solutions are derived using trigonometric and hyperbolic functions by employing this method. A graphical representation of the solutions is also presented to analyse the dynamics of the system. With the help of the computational software Mathematica, the visualisations for the wave configuration of various solutions are presented using three- and two-dimensional plots. The plots represents the wave profile of a wide range of singular soliton, multi-solitons and periodic solitons obtained for the considered equations by taking appropriate values for the associated parameters. The collection of solutions listed in the article signify the importance and possible application of GERF method to a wide variety of nonlinear differential equations in physical phenomena.</p></div>","PeriodicalId":743,"journal":{"name":"Pramana","volume":"99 3","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New analytical solutions of the \\\\((3+1)\\\\)-dimensional generalised B-type Kadomtsev–Petviashvili equation\",\"authors\":\"Ruchi Kaur,&nbsp;Sukhjit Singh,&nbsp;Dharmendra Kumar\",\"doi\":\"10.1007/s12043-025-02942-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Genralised B-type Kadomtsev–Petviashvili (gBKP) equation corresponds to the weak dispersive nature of the propagating waves in quasi-media and fluid mechanics. In this paper, a collection of exact soliton and periodic wave solutions are obtained for the (<span>\\\\(3 + 1\\\\)</span>)-dimensional gBKP equation using the well-known generalised exponential rational function (GERF) method. Several classes of exact soliton and periodic solutions are derived using trigonometric and hyperbolic functions by employing this method. A graphical representation of the solutions is also presented to analyse the dynamics of the system. With the help of the computational software Mathematica, the visualisations for the wave configuration of various solutions are presented using three- and two-dimensional plots. The plots represents the wave profile of a wide range of singular soliton, multi-solitons and periodic solitons obtained for the considered equations by taking appropriate values for the associated parameters. The collection of solutions listed in the article signify the importance and possible application of GERF method to a wide variety of nonlinear differential equations in physical phenomena.</p></div>\",\"PeriodicalId\":743,\"journal\":{\"name\":\"Pramana\",\"volume\":\"99 3\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pramana\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12043-025-02942-3\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pramana","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s12043-025-02942-3","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

广义b型Kadomtsev-Petviashvili (gBKP)方程对应于准介质和流体力学中传播波的弱色散性质。本文利用众所周知的广义指数有理函数(GERF)方法,得到了(\(3 + 1\))维gBKP方程的精确孤子解和周期波解的集合。利用该方法,利用三角函数和双曲函数导出了几类精确孤子解和周期解。图形表示的解决方案也提出了分析系统的动力学。在数学计算软件Mathematica的帮助下,用三维和二维图形展示了各种解的波组态的可视化。该图表示通过对相关参数取适当值而得到的广泛范围的奇异孤子、多孤子和周期孤子的波剖面。文中列出的解的集合表明了GERF方法在各种物理现象中的非线性微分方程中的重要性和可能的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New analytical solutions of the \((3+1)\)-dimensional generalised B-type Kadomtsev–Petviashvili equation

Genralised B-type Kadomtsev–Petviashvili (gBKP) equation corresponds to the weak dispersive nature of the propagating waves in quasi-media and fluid mechanics. In this paper, a collection of exact soliton and periodic wave solutions are obtained for the (\(3 + 1\))-dimensional gBKP equation using the well-known generalised exponential rational function (GERF) method. Several classes of exact soliton and periodic solutions are derived using trigonometric and hyperbolic functions by employing this method. A graphical representation of the solutions is also presented to analyse the dynamics of the system. With the help of the computational software Mathematica, the visualisations for the wave configuration of various solutions are presented using three- and two-dimensional plots. The plots represents the wave profile of a wide range of singular soliton, multi-solitons and periodic solitons obtained for the considered equations by taking appropriate values for the associated parameters. The collection of solutions listed in the article signify the importance and possible application of GERF method to a wide variety of nonlinear differential equations in physical phenomena.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pramana
Pramana 物理-物理:综合
CiteScore
3.60
自引率
7.10%
发文量
206
审稿时长
3 months
期刊介绍: Pramana - Journal of Physics is a monthly research journal in English published by the Indian Academy of Sciences in collaboration with Indian National Science Academy and Indian Physics Association. The journal publishes refereed papers covering current research in Physics, both original contributions - research papers, brief reports or rapid communications - and invited reviews. Pramana also publishes special issues devoted to advances in specific areas of Physics and proceedings of select high quality conferences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信