{"title":"利用创新方法回收办公室废纸,并可制成吸音墙板","authors":"Chun-Won Kang, Byung-Sook Choi, Masumi Hasegawa, Jeong Seok Oh, Haradhan Kolya","doi":"10.1007/s10163-025-02250-3","DOIUrl":null,"url":null,"abstract":"<div><p>This study addresses the dual challenges of waste management and noise pollution by developing an eco-friendly sound-absorbing material using crushed waste printed paper. The objective is to repurpose office waste paper into a sustainable sound absorption panel board, offering an alternative to traditional materials. The novelty of this research lies in the combination of crushed waste paper with varying air-back cavity depths to optimize sound absorption, particularly at lower frequencies. Samples of varying thicknesses (10–30 mm) were evaluated using the impedance tube method across 250–6400 Hz. The findings show that the sound absorption coefficient (SAC) and Noise Reduction Coefficient (NRC) increase with greater thickness and air-back cavities. The thickest sample achieved a peak NRC of 0.56. Statistical analysis (t-test) confirms a significant variation in the sound absorption coefficient with sample thickness and the presence of an air back cavity. These results suggest that crushed waste paper could be useful for sound-absorbing panel boards in wall, ceiling tiles, and acoustic panels. Its application may help reduce carbon dioxide emissions and promote environmental sustainability.</p></div>","PeriodicalId":643,"journal":{"name":"Journal of Material Cycles and Waste Management","volume":"27 4","pages":"2444 - 2453"},"PeriodicalIF":3.0000,"publicationDate":"2025-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Innovative approaches for recycling office waste paper with potential for sound-absorbing wall panels\",\"authors\":\"Chun-Won Kang, Byung-Sook Choi, Masumi Hasegawa, Jeong Seok Oh, Haradhan Kolya\",\"doi\":\"10.1007/s10163-025-02250-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study addresses the dual challenges of waste management and noise pollution by developing an eco-friendly sound-absorbing material using crushed waste printed paper. The objective is to repurpose office waste paper into a sustainable sound absorption panel board, offering an alternative to traditional materials. The novelty of this research lies in the combination of crushed waste paper with varying air-back cavity depths to optimize sound absorption, particularly at lower frequencies. Samples of varying thicknesses (10–30 mm) were evaluated using the impedance tube method across 250–6400 Hz. The findings show that the sound absorption coefficient (SAC) and Noise Reduction Coefficient (NRC) increase with greater thickness and air-back cavities. The thickest sample achieved a peak NRC of 0.56. Statistical analysis (t-test) confirms a significant variation in the sound absorption coefficient with sample thickness and the presence of an air back cavity. These results suggest that crushed waste paper could be useful for sound-absorbing panel boards in wall, ceiling tiles, and acoustic panels. Its application may help reduce carbon dioxide emissions and promote environmental sustainability.</p></div>\",\"PeriodicalId\":643,\"journal\":{\"name\":\"Journal of Material Cycles and Waste Management\",\"volume\":\"27 4\",\"pages\":\"2444 - 2453\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Material Cycles and Waste Management\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10163-025-02250-3\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Material Cycles and Waste Management","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10163-025-02250-3","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Innovative approaches for recycling office waste paper with potential for sound-absorbing wall panels
This study addresses the dual challenges of waste management and noise pollution by developing an eco-friendly sound-absorbing material using crushed waste printed paper. The objective is to repurpose office waste paper into a sustainable sound absorption panel board, offering an alternative to traditional materials. The novelty of this research lies in the combination of crushed waste paper with varying air-back cavity depths to optimize sound absorption, particularly at lower frequencies. Samples of varying thicknesses (10–30 mm) were evaluated using the impedance tube method across 250–6400 Hz. The findings show that the sound absorption coefficient (SAC) and Noise Reduction Coefficient (NRC) increase with greater thickness and air-back cavities. The thickest sample achieved a peak NRC of 0.56. Statistical analysis (t-test) confirms a significant variation in the sound absorption coefficient with sample thickness and the presence of an air back cavity. These results suggest that crushed waste paper could be useful for sound-absorbing panel boards in wall, ceiling tiles, and acoustic panels. Its application may help reduce carbon dioxide emissions and promote environmental sustainability.
期刊介绍:
The Journal of Material Cycles and Waste Management has a twofold focus: research in technical, political, and environmental problems of material cycles and waste management; and information that contributes to the development of an interdisciplinary science of material cycles and waste management. Its aim is to develop solutions and prescriptions for material cycles.
The journal publishes original articles, reviews, and invited papers from a wide range of disciplines related to material cycles and waste management.
The journal is published in cooperation with the Japan Society of Material Cycles and Waste Management (JSMCWM) and the Korea Society of Waste Management (KSWM).