一元范畴内的简单对象中的离散顶点

IF 0.5 4区 数学 Q3 MATHEMATICS
Arne Mertens
{"title":"一元范畴内的简单对象中的离散顶点","authors":"Arne Mertens","doi":"10.1007/s10485-025-09812-4","DOIUrl":null,"url":null,"abstract":"<div><p>We follow the work of Aguiar (Internal categories and quantum groups. PhD Thesis, Cornell University, 1997) on internal categories and introduce simplicial objects internal to a monoidal category as certain colax monoidal functors. Then we compare three approaches to equipping them with a discrete set of vertices. We introduce based colax monoidal functors and show that under suitable conditions they are equivalent to the templicial objects defined by Lowen and Mertens (Algebr Geom Topol, 2024). We also compare templicial objects to the enriched Segal precategories appearing in Lurie ((Infinity,2)-categories and the Goodwillie calculus I. Preprint at https://arxiv.org/abs/0905.0462v2), Simpson (Homotopy theory of higher categories. New mathematical monographs, Cambridge University Press, Cambridge, vol 19, p 634, 2012, https://doi.org/10.1017/CBO9780511978111) and Bacard (Theory Appl Categ 35:1227–1267, 2020), and show that they are equivalent for cartesian monoidal categories, but not in general.</p></div>","PeriodicalId":7952,"journal":{"name":"Applied Categorical Structures","volume":"33 3","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discrete Vertices in Simplicial Objects Internal to a Monoidal Category\",\"authors\":\"Arne Mertens\",\"doi\":\"10.1007/s10485-025-09812-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We follow the work of Aguiar (Internal categories and quantum groups. PhD Thesis, Cornell University, 1997) on internal categories and introduce simplicial objects internal to a monoidal category as certain colax monoidal functors. Then we compare three approaches to equipping them with a discrete set of vertices. We introduce based colax monoidal functors and show that under suitable conditions they are equivalent to the templicial objects defined by Lowen and Mertens (Algebr Geom Topol, 2024). We also compare templicial objects to the enriched Segal precategories appearing in Lurie ((Infinity,2)-categories and the Goodwillie calculus I. Preprint at https://arxiv.org/abs/0905.0462v2), Simpson (Homotopy theory of higher categories. New mathematical monographs, Cambridge University Press, Cambridge, vol 19, p 634, 2012, https://doi.org/10.1017/CBO9780511978111) and Bacard (Theory Appl Categ 35:1227–1267, 2020), and show that they are equivalent for cartesian monoidal categories, but not in general.</p></div>\",\"PeriodicalId\":7952,\"journal\":{\"name\":\"Applied Categorical Structures\",\"volume\":\"33 3\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Categorical Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10485-025-09812-4\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Categorical Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10485-025-09812-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们遵循阿吉亚尔(内部分类和量子群)的工作。博士论文,Cornell University, 1997)关于内部范畴和引入单一性范畴内部的简单对象作为某些colax单一性函子。然后,我们比较了三种用离散顶点集装备它们的方法。我们引入了基于colax的单函子,并证明在适当的条件下它们等价于由Lowen和Mertens (Algebr Geom Topol, 2024)定义的模板对象。我们还比较了temple对象与出现在Lurie ((Infinity,2)-categories和Goodwillie calculus I.(预打印在https://arxiv.org/abs/0905.0462v2), Simpson(高等范畴的同伦理论)中丰富的Segal预范畴。新的数学专著,剑桥大学出版社,剑桥,vol . 19, p . 634, 2012, https://doi.org/10.1017/CBO9780511978111)和Bacard (Theory applied Categ 35:1227-1267, 2020),并表明它们对于笛卡尔一元范畴是等价的,但不是一般的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discrete Vertices in Simplicial Objects Internal to a Monoidal Category

We follow the work of Aguiar (Internal categories and quantum groups. PhD Thesis, Cornell University, 1997) on internal categories and introduce simplicial objects internal to a monoidal category as certain colax monoidal functors. Then we compare three approaches to equipping them with a discrete set of vertices. We introduce based colax monoidal functors and show that under suitable conditions they are equivalent to the templicial objects defined by Lowen and Mertens (Algebr Geom Topol, 2024). We also compare templicial objects to the enriched Segal precategories appearing in Lurie ((Infinity,2)-categories and the Goodwillie calculus I. Preprint at https://arxiv.org/abs/0905.0462v2), Simpson (Homotopy theory of higher categories. New mathematical monographs, Cambridge University Press, Cambridge, vol 19, p 634, 2012, https://doi.org/10.1017/CBO9780511978111) and Bacard (Theory Appl Categ 35:1227–1267, 2020), and show that they are equivalent for cartesian monoidal categories, but not in general.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
16.70%
发文量
29
审稿时长
>12 weeks
期刊介绍: Applied Categorical Structures focuses on applications of results, techniques and ideas from category theory to mathematics, physics and computer science. These include the study of topological and algebraic categories, representation theory, algebraic geometry, homological and homotopical algebra, derived and triangulated categories, categorification of (geometric) invariants, categorical investigations in mathematical physics, higher category theory and applications, categorical investigations in functional analysis, in continuous order theory and in theoretical computer science. In addition, the journal also follows the development of emerging fields in which the application of categorical methods proves to be relevant. Applied Categorical Structures publishes both carefully refereed research papers and survey papers. It promotes communication and increases the dissemination of new results and ideas among mathematicians and computer scientists who use categorical methods in their research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信